US009009716B2

a2 United States Patent 10) Patent No.: US 9,009,716 B2
Bohrer et al. (45) Date of Patent: *Apr. 14, 2015
(54) CREATING A THREAD OF EXECUTION IN A 7,395,409 B2 7/2008 Dowling
COMPUTER PROCESSOR 7,395,521 Bl 7/2008 Ma et al.
7,418,585 B2 82008 Kissell
. 7,424,599 B2 9/2008 Kissell et al.
(75) Inventors: Patrick J. Bohrer, Cf:dar Park, TX (US); 7.504.236 B2 9/2009 Tiang cf al.
Ahmed Gheith, Austin, TX (US); James 7,610,473 B2 10/2009 Kissell
L. Peterson, Austin, TX (US) 7,676,664 B2 3/2010 Kissell
7,725,697 B2 5/2010 K_issell
(73) Assignee: International Business Machines ;’;g?gi; E% 1;%8}8 ?1smastetlal.
i ,801, iang et al.
Corporation, Armonk, NY (US) 8,230,423 B2 7/2012 Frigo et al.
)) o) 8,245,081 B2 82012 Colbert et al.
(*) Notice: Subject to any disclaimer, the term of this 8,561,070 B2 10/2013 Bohrer et al.
patent is extended or adjusted under 35 2002/0199179 Al 12/2002 Lavery et al.
U.S.C. 154(b) by 278 days. (Continued)
This patent is subject to a terminal dis-
claimer. FOREIGN PATENT DOCUMENTS
CN 1842770 10/2006
. WO 2006074027 7/2006
(22) Filed: Apr. 27, 2012
OTHER PUBLICATIONS
(65) Prior Publication Data
“U.S. Appl. No. 12/958,980 Office Action”, Mar. 1, 2013, 11 pages.
US 2012/0216204 A1l Aug. 23,2012 .
(Continued)
Related U.S. Application Data
(63) Continuation of application No. 12/959,075, filed on Primary Examiner — Mengyao Zhe
Dec. 2, 2010, now Pat. No. 8,561,070. (74) Attorney, Agent, or Firm — DeLizio Gilliam, PLLC
(51) Imnt.ClL
GOG6F 9/46 (2006.01) 7 ABSTRACT
GO6F 9/48 (2006.01) Creating a thread of execution in a computer processor,
(52) US.CL including copying, as indicated by a hardware processor
(0] G GOG6F 9/4843 (2013.01) opcode having been specified by a user-level process, data
(58) Field of Classification Search from a first set of registers to a second set of registers, wherein
None the first set of registers is associated with a parent hardware
See application file for complete search history. thread, wherein the second set of registers is associated with
a child hardware thread, wherein the child hardware thread is
(56) References Cited in a wait state, and changing, as indicated by the hardware

U.S. PATENT DOCUMENTS

6,848,097 Bl
7,243,345 B2

1/2005 Alverson et al.
7/2007 Ohsawa et al.

processor opcode, the child hardware thread from the wait
state to an ephemeral run state.

10 Claims, 7 Drawing Sheets

US 9,009,716 B2
Page 2

(56)

2003/0014473
2004/0268093
2006/0117316
2007/0106988
2007/0106990
2007/0283357
2009/0216993
2009/0257450
2009/0300651
2010/0005277
2011/0197090
2012/0144395
2012/0144396

References Cited

U.S. PATENT DOCUMENTS

Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al

1/2003
12/2004
6/2006
5/2007
5/2007
12/2007
8/2009
10/2009
12/2009
1/2010
8/2011
6/2012
6/2012

Ohsawa et al.
Samra et al.
Cismas et al.
Kissell
Kissell

Jeter et al.

Venkumahanti et al.

Sirigiri et al.
Jiang et al.
Gibert et al.
Colbert et al.
Bohrer et al.
Bohrer et al.

OTHER PUBLICATIONS

“U.S. Appl. No. 12/959,075”, Dec. 7, 2012 , 15 pages.

“U.S. Appl. No. 12/959,075 Final Office Action”, Apr. 11, 2013, 9
pages.

Marr, Deborah T. et al., “Hyper-Threading Technology Architecture
and Microarchitecture”, Publisher Intel Technology Journal; vol. 06,
Issue 01 www.intel.com/technology/itj/2002/volume06issue01/
vol6issl__hyper_threading technology.pdf Feb. 14, 2002 , 66
pages.

Reyes, Victor et al., “A Multicast Inter-Task Communication Proto-
col for Embedded Multiprocessor Systems”, Proceedings of the 3rd
IEEE/ACM/IFIP international conference on Hardware/software
codesign and system synthesis 2005 , pp. 267-272.

U.S. Patent Apr. 14,2015 Sheet 1 of 7 US 9,009,716 B2

AR 188
Usardevel Applicalion

138

Hax Mo of O
Theoads Theoad 13 134

-’

Thrants C o ang

i
N
2
2
s

indieation OF

Lrgated 108

Yitden
Aglapter

o

Parant MW Child W

Bus Adupler

Lhner g

5O Davives 181

Adupter a
i7a

inineln

{iate Copvwves, Mabwors 3

L Db
oty

8

U.S. Patent Apr. 14,2015 Sheet 2 of 7 US 9,009,716 B2

e, in, s e a S KA, A S N . e, A s e Tl K A N i, A e S Al e, A s e el A WA N i, A A o N e, A e N al, A A el e A A D KA n L e S Al e A i N e A AR

Throsd Sinls Maching
ry

wal tynde 2

Systors Dall,
tornuph, 03
Excaplion

B B0 AR B BRI N R B M R RO S0 A B8 RO R AR PO AP NI NN RO B M NI RO A NI S D I SN R BB NI AR PO PO A NI b PO R SN RS BS BP FI NN RSB B AP

U.S. Patent Apr. 14,2015 Sheet 3 of 7 US 9,009,716 B2

v%mﬁ

Rugister

Wall St

Travianis 2
s i
b

f'»‘i
Tk $3

Change, By The Hardware Provesior Opoole, The
Ci Hadware Thesas From The Wal State To An
Eghwreent Run Siade 34

b

S, By The Handea ?srx:,»gam Upode For 1

Chilt ~iags el
Dl %%aaﬁw»‘w Tead As A Ol 8

¥
Aasign, By The Handwars Prcessor Cgméfﬂ A
Lrdgue Thyesd Weniier T The Chid
Thraad nchuling Stordng An il A Ragid
2 The Child Hardware Thisad 28

3

Child HW
= oy

13

? FG 3

»:372*%3{{5 gt Protags

:fwam ‘fﬁsﬁa& ;z i

U.S. Patent

Apr. 14,2015

Sheet 4 of 7

US 9,009,716 B2

Run Binle

Wt Binte

Enhermay

Chi Harhar Tb{%‘é '

I

e
¥

Call, By The Child %&“*%w 'fhf@fm(A Oneraling

?éf;z}t*sﬁ*{ ?’é@rﬁaﬁ

st Thrag
Lssonipior 430

Ranishor
Contendy

NPl N B NI O NI A PN PO NI B RO DB O N DB NN SN SO PO P B W R N NI

Fun Slgte

U.S. Patent

Apr. 14,2015

¥
[z]

Sheet S of 7

US 9,009,716 B2

Farant HW
o

Rogister

Cogry, By A Hardeare Proosssy Oonotle)
08 %M@@mﬁr

With Bo
, Ragister Gontanls Faes A Parent

Uhange, By The Hardware Provess Rogister 1} Epbamargd
{::fsa %émﬁ«wa Thrnad Frow The Lovlant Hun Bials
Epharas Run Saig 32 2
Another Thread
Disseriptor 808
' o
Rag M R Shate

U.S. Patent Apr. 14,2015 Sheet 6 of 7 US 9,009,716 B2

mmmwmmmww»ﬁmwwmt

¢ Linmye Lavved Process

Saremt HW

AN IBAC I B

YA

o Hardears Thrasd From The Wl Sieie To
Ephamuesd Mun Blale 3

Y

HMarrhware Theesd, &0
csplion Therely fnobing An m«sfmgi
By OF The Liersting Sesten 832

Dasing, By ¥
Exorut

"

{:&»u}?{r% 3 Arih
8 : SRR
Easd - ; Eonsrriond

& s

Qs;m‘&,m,g w@m’; Thesadt Dascrip g;;zs:;s‘%%:z 17001) NN——
Hardvare Thosad 8 '

Ragisier
Contants

R

Child Thread
Dasoriphor §10

For Siale

U.S. Patent Apr. 14, 2015

§ A e e

SW Lave Proness i
' §

o e o

¥
/ Coooieltz /

Sheet 7 of 7

US 9,009,716 B2

Fowie E:ew'ﬁj 31:- X w%*s i Hamlwane ’%”fﬁs»z{ ;?,5,”

o

Wl Slade

Changs, By Tha H

%{{M&f’& %ﬂ*nm «-'; i
i Mardheeare Thaad By

r% %’zs:zé..f: T da

aeods, Tha

k4
Exscwte 14/ Opeodelz /

i Tha Ohdic Hardwars Thread, The Ohild
Thrsad To The Wall Siate 704

s Optnde Bxsoulad

Hardhware

Regighw {1 Ephemergd
Codonts 1] Run Siale
S0 08

3
¥
§
3
3
H
§
§
3
H
£
§
H
H
§
3
H
i'
Rogeter §1 ., .
“ Yt Bhade
Contents smwn-%«ze
596 il

FG.7

US 9,009,716 B2

1

CREATING A THREAD OF EXECUTION IN A
COMPUTER PROCESSOR

RELATED APPLICATIONS

This application claims the benefitunder 35 U.S.C. §120 of
U.S. Pat. No. 8,561,070 filed Dec. 2, 2010.

BACKGROUND

The field of the inventive subject matter is data processing,
or, more specifically, creating a thread of execution in a com-
puter processor.

In current computer architecture, execution of software
applications is carried out with processes that contain any
number of software threads of execution. Software threads of
execution are executed in hardware threads on a computer
processor. Software threads of execution are administered—
created, scheduled, maintained, and retired—Dby an operating
system. A process many contain hundreds or even thousands
of software threads. Administering large numbers of software
threads, however, requires an extremely large operational
overhead for an operating system. Current implementations
of thread creation, for example, are often inefficient.

SUMMARY

Methods, apparatus, and products are disclosed for creat-
ing a thread of execution in a computer processor. In embodi-
ments of the present inventive subject matter, creating a
thread of execution in a computer processor includes copy-
ing, by a hardware processor opcode called by a user-level
process, with no operating system involvement, register con-
tents from a parent hardware thread to a child hardware
thread, the child hardware thread being in a wait state and
changing, by the hardware processor opcode, the child hard-
ware thread from the wait state to an ephemeral run state.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 sets forth a block diagram of an example computer
system in which a thread of execution is created in a computer
processor according to embodiments of the present inventive
subject matter.

FIG. 2 sets forth an example state machine for a thread of
execution in a computer processor in accordance with
embodiments of the present inventive subject matter.

FIG. 3 sets forth a flow chart illustrating an exemplary
method for creating a thread of execution in a computer
processor according to embodiments of the present inventive
subject matter.

FIG. 4 sets forth a flow chart illustrating a further exem-
plary method for creating a thread of execution in a computer
processor according to embodiments of the present inventive
subject matter.

FIG. 5 sets forth a flow chart illustrating a further exem-
plary method for creating a thread of execution in a computer
processor according to embodiments of the present inventive
subject matter.

FIG. 6 sets forth a flow chart illustrating a further exem-
plary method for creating a thread of execution in a computer
processor according to embodiments of the present invention.

FIG. 7 sets forth a flow chart illustrating a further exem-
plary method for creating a thread of execution in a computer
processor according to embodiments of the present invention.

DESCRIPTION OF EMBODIMENT(S)

Exemplary methods, apparatus, and products for creating a
thread of execution in a computer processor in accordance

10

20

25

35

40

45

65

2

with the present inventive subject matter are described with
reference to the accompanying drawings, beginning with
FIG. 1. FIG. 1 sets forth a block diagram of an example
system in which a thread of execution is created in a computer
processor according to embodiments of the present inventive
subject matter. A thread of execution, also referred to in this
specification as a ‘software thread,” is the smallest unit of
processing that can be scheduled by an operating system for
execution on a processor. A thread is typically contained
inside a process. Multiple threads can exist within the same
process and share resources such as memory, while different
processes do not share these resources. In particular, the
threads of a process share the process’s instructions and con-
text—values variables have at any given moment in execu-
tion. A ‘hardware’ thread, by contrast, is implemented in
hardware of a computer processor and executes instructions
of software threads. That is, support for a hardware thread is
built into the processor itself in the form of a separate archi-
tectural register set for each hardware thread, so that each
hardware thread can execute simultaneously with no need for
context switches among the hardware threads. Each such
hardware thread can run multiple software threads of execu-
tion implemented with the software threads assigned to por-
tions of processor time called ‘quanta’ or ‘time slots’ and
context switches that save the contents of a set of 3 architec-
tural registers for a software thread during periods when that
software thread loses possession of its assigned hardware
thread.

The system of FIG. 1 includes an example computer (152),
automated computing machinery, configured to carry out
thread creation in a computer processor in accordance with
embodiments of the present inventive subject matter. The
computer (152) of FIG. 1 includes at least one computer
processor (156) or ‘CPU’ as well as random access memory
(168) (‘RAM’) which is connected through a high speed
memory bus (166) and bus adapter (158) to processor (156)
and to other components of the 10 computer (152).

Stored in RAM (168) of the example computer (152) are a
user-level application (138) and an operating system (154). A
user-level application is a module of computer program
instructions that carries out user-level data processing tasks.
Examples of such applications include word processing
applications, spreadsheet applications, database management
applications, media library applications, multimedia editing
applications, and others as will occur to readers of skill in the
art. Applications are described as ‘user-level” to distinguish
them from a ‘system-level” or ‘kernel-level” process, such as
the operating system (154) stored in RAM (168). Typically, in
prior art, execution of user-level applications are supported
by a system level process: in executing a user-level applica-
tion an operating system, for example, may instantiate a pro-
cess, assign a process identifier to the process, assign a virtual
address space to the process, instantiate one or more software
threads of execution within the process, assign thread identi-
fiers to each of the software threads, schedule the software
threads for execution on the computer processor, manage
memory paging among user-level processes and software
threads, and so on as will occur to readers of skill in the art.
Also, once instantiated, a user-level process of the prior art
may create additional threads through system calls to the
operating system. Each such system call, results in a time and
resource consuming process. In this way, user-level applica-
tions may be described as operating ‘above’ or ‘on top of” a
system-level application. Examples of operating systems use-
ful in computers in which threads of execution are created in
a computer processor according to embodiments of the
present inventive subject matter include UNIX™, Linux™,

US 9,009,716 B2

3
Microsoft Xp™, AIX™, IBM’s 15/0S™, and others as will
occur to those of skill in the art. The user-level application
(138), and operating system (154) in the example of FIG. 1
are shown in RAM (168), but many components of such
software typically are stored in nonvolatile memory also,
such as, for example, on a disk drive (170).

In the example of FIG. 1, the operating system (154) has
created a process descriptor (140) that describes the process
for the user-level application (138). The process descriptor
(140) may specify a process identifier, an address space
assigned to the process, a status of resources allocated to a
process, a status of the process, a copy of processor registers
to reinstate upon a context switch in which the process is
restored, and so on as will occur to readers of skill in the art.
The operating system (154) in the example of FIG. 1 has also
instantiated a number of software threads, specified by thread
descriptors (142) stored in RAM (168). Thread descriptors
may specity a thread identifier, an address space assigned to
the process within which the thread is contained, a status of
resources allocated to the process within which the thread is
contained, a status of the thread, a copy of processor registers
to reinstate upon a context switch in which the thread is
restored, and so on as will occur to readers of skill in the art.

The software threads in the example of FIG. 1 for the
user-level application (138) are scheduled to execute within
hardware threads (120, 122) implemented in the processor
(156). That is, computer program instructions forming a
thread of the user-level application (138) are executed within
a hardware thread. Computer program instructions may be
executed within a hardware thread through use of an instruc-
tion decoder (132), an instruction dispatcher (134), and
execution units (136). An instruction decoder (132) is a net-
work of static and dynamic logic within the processor (156)
that retrieves instructions (118) from registers in the register
sets (124, 126) and decodes the instructions into microin-
structions for execution on execution units (136) within the
processor. An instruction to be decoded for execution, for
example may include an opcode (operation code). An opcode
is the portion of a machine language instruction that specifies
the operation to be performed. Apart from the opcode itself,
an instruction may also have one or more parameters, also
called operands, on which the operation should act, although
some operations may have implicit operands, or none at all.
Depending on the architecture of the processor upon which
the opcode is decoded and executed, the operands may be
register values, values in a call stack, other memory values,
1/0 ports, and the like. Once decoded, Execution units (136)
execute the microinstructions. Examples of execution units
include LOAD execution units, STORE execution units,
floating point execution units, execution units for integer
arithmetic and logical operations, and so on. The computer
processor (156) in the example of FIG. 1 also includes an
instruction dispatcher (134) that arbitrates, in the presence of
resource contention, priorities for dispatch of instructions
from the hardware threads (120, 122) of execution. The
instruction dispatcher (136) is a network of static and
dynamic logic within the processor (156) that dispatches
microinstructions to the execution units (136) in the processor
(156).

The processor (156) in the example system of FIG. 1,
operates generally for creating a thread of execution by copy-
ing, by a hardware processor opcode called by a user-level
process—in FIG. 1, the process implemented for the user-
level application (138) described by the process descriptor
(140)—with no operating system (154) involvement, register
contents (118) from a parent hardware thread (120) to a child
hardware thread (122). At the time the hardware processor

25

40

45

55

4

opcode copies the register contents (118) from the parent
hardware thread (120) to the child hardware thread (122), the
child hardware thread (122) is in a wait state (112). After
copying the register contents, the hardware processor opcode
(102), then changes the child hardware thread from the wait
state (112) to an ephemeral run state (112). The hardware
processor opcode (102) is described here as creating a thread
of execution in a computer processor in accordance with
embodiments of the present inventive subject matter in that
the opcode is executed by the processor and the processor
carries out actions specified by the opcode.

In the example of FIG. 1, the hardware processor opcode
called by the user-level process (138) is a fork opcode (102)
that includes an operand specifying a maximum number
(104) of child hardware threads to change from the wait state
to the ephemeral run state, a location in which to store a
number (108) of child hardware threads changed from the
wait state to the ephemeral run state, a flag for the processor
to set in executing the opcode which indicates (106) whether
any child hardware threads were changed from the wait state
to the ephemeral run state, and a flag for the processor to set
in executing the opcode that identifies (110) the parent hard-
ware thread as a parent (rather than a child hardware thread).
In a similar manner, in changing the child hardware thread
(122) from the wait state (112) to the ephemeral run state
(112), the hardware processor opcode (102) may also set, for
the child hardware thread (122), a flag identifying (116) the
child hardware thread as a child and assign, by the hardware
processor opcode, a unique thread identifier (114) to the child
hardware thread including storing an integer in the a register
of'the child hardware thread. In the example of FIG. 1, a “flag’
may be implemented in various ways including for example,
as a value stored in a particular register, as one or more bits in
awell-known location, such as a condition code register of the
hardware thread, or in other ways as will occur to readers of
skill in the art.

The ‘state’ of the child hardware thread (122) in the
example of FIG. 1, is depicted as a value in a register (126)
associated with the child hardware thread. A hardware thread
as implemented in accordance with embodiments of the
present inventive subject matter, and as described in greater
detail with respect to FIG. 2, below, may be set in one of three
states: a run state, a wait state, and an ephemeral run state.
When in a run state, a hardware thread has full operating
system support—a thread descriptor and other system-level
support, for example. That is, when a hardware thread is in the
run state, the operating system has full knowledge of the
hardware thread, its existence and operation. In a wait state,
the operating system has knowledge of the hardware thread’s
existence, but the hardware thread is inactive from the per-
spective of the operating system. A hardware thread in the
wait state is not executing instructions of a software thread.
When in the wait state, a hardware thread may be changed to
an ephemeral run state without operating system support and
may begin to execute instructions. That is, without the oper-
ating system instantiating a canonical thread descriptor for
the hardware thread, the hardware thread, once in the ephem-
eral run state may execute software thread instructions. The
ephemeral run state is described as ‘ephemeral’ in that a
hardware thread executing in the ephemeral run state may
(but is not required to) complete execution and return to the
wait state, never once using operating system support.

The computer (152) of FIG. 1 includes disk drive adapter
(172) coupled through expansion bus (160) and bus adapter
(158) to processor (156) and other components of the com-
puter (152). Disk drive adapter (172) connects non-volatile
data storage to the computer (152) in the form of disk drive

US 9,009,716 B2

5

(170). Disk drive adapters useful in computers for creating a
thread of execution in a computer processor according to
embodiments of the present inventive subject matter include
Integrated Drive Electronics (‘IDE”) adapters, Small Com-
puter System Interface (‘SCSI”) adapters, and others as will
occur to those of skill in the art. Non-volatile computer
memory also may be implemented for as an optical disk drive,
electrically erasable programmable read-only memory (so-
called ‘EEPROM” or ‘Flash’ memory), RAM drives, and so
on, as will occur to those of skill in the art.

The example computer (152) of FIG. 1 includes one or
more input/output (‘1/0”) adapters (178). 1/O adapters imple-
ment user-oriented input/output through, for example, soft-
ware drivers and computer hardware for controlling output to
display devices such as computer display screens, as well as
user input from user input devices (181) such as keyboards
and mice. The example computer (152) of FIG. 1 includes a
video adapter (209), which is an example of an 1/O adapter
specially designed for graphic output to a display device
(180) such as a display screen or computer monitor. Video
adapter (209) is connected to processor (156) through a high
speed video bus (164), bus adapter (158), and the front side
bus (162), which is also a high speed bus.

The exemplary computer (152) of FIG. 1 includes a com-
munications adapter (167) for data communications with
other computers (182) and for data communications with a
data communications network (100). Such data communica-
tions may be carried out serially through RS-232 connections,
through external buses such as a Universal Serial Bus
(‘USB’), through data communications networks such as IP
data communications networks, and in other ways as will
occur to those of skill in the art. Communications adapters
implement the hardware level of data communications
through which one computer sends data communications to
another computer, directly or through a data communications
network. Examples of communications adapters useful for
creating a thread of execution in a computer processor
according to embodiments of the present inventive subject
matter include modems for wired dial-up communications,
Ethernet (IEEE 802.3) adapters for wired data communica-
tions network communications, and 802.11 adapters for wire-
less data communications network communications.

The arrangement of servers and other devices making up
the exemplary system illustrated in FIG. 1 are for explanation,
not for limitation. Data processing systems useful according
to various embodiments of the present inventive subject mat-
ter may include additional servers, routers, other devices, and
peer-to-peer architectures, not shown in FIG. 1, as will occur
to those of skill in the art. Networks in such data processing
systems may support many data communications protocols,
including for example TCP (Transmission Control Protocol),
1P (Internet Protocol), HTTP (HyperText Transfer Protocol),
WAP (Wireless Access Protocol), HDTP (Handheld Device
Transport Protocol), and others as will occur to those of skill
in the art. Various embodiments of the present inventive sub-
ject matter may be implemented on a variety of hardware
platforms in addition to those illustrated in FIG. 1.

For further explanation, FIG. 2 sets forth an example state
machine for a thread of execution in a computer processor in
accordance with embodiments of the present inventive sub-
ject matter. The example state machine (200) of FIG. 2
includes three states: a canonical run state (202), a wait state
(204), and an ephemeral run state (206). Any hardware thread
of a computer processor implemented and configured in
accordance with embodiments of the present inventive sub-
ject matter may, at any time, be in one of these three states.
The state of a hardware thread may be represented by a value

10

15

20

25

30

35

40

45

50

55

60

65

6

stored in a register associated with the hardware thread and in
other ways as will occur to readers of skill in the art. Upon
each change in a hardware thread’s state, the value stored in
the register is also changed to correspond with the hardware
thread’s current state.

In the run state (202), a hardware thread has full operating
system support—a canonical thread descriptor. That is, when
a hardware thread is in the run state (202), the operating
system has full knowledge of the hardware thread, its exist-
ence and operation. Software threads of execution are
executed in the hardware thread as scheduled by the operating
system, with context switches and time slices. A software
thread executing a hardware thread in the run state (202) may
cause the hardware thread (202) to enter a wait state by calling
‘wait’ opcode (210)—a machine instruction that when
executed by the processor causes the processor to change a
hardware thread’s state from the run state (202) to the wait
state (204).

Inthe wait state (204), the operating system has knowledge
of the hardware thread’s existence, but the hardware thread is
inactive from the perspective of the operating system. A hard-
ware thread in the wait state is not executing instructions of a
software thread. A hardware thread may return from the wait
state upon an interrupt (208) thereby invoking an interrupt
handler of the operating system. Alternatively, a user-level
process executing in another hardware thread (referred to as a
parent hardware thread here) may execute a hardware proces-
sor opcode—fork. rt,rn (214), for example—copying with no
operating system involvement, register contents from parent
hardware thread to the hardware thread in the wait state (204)
and change, by the hardware processor opcode, the hardware
thread from the wait state (204) to an ephemeral run state
(206). The hardware thread changed from the wait state (204)
to the ephemeral run state (206) is referred to now as a child
hardware thread. In this example, ‘rt” and ‘rn’ are parameters
of the fork opcode (214) that specify a number of threads
actually created and maximum number of child threads to
create.

In the ephemeral run state (206), the child hardware thread
may execute instructions copied from the register of the par-
ent hardware thread. If the child hardware thread completes
execution ofthe instructions, the child hardware may return to
the wait state (204)—again, without operating system
involvement. That is, instruction executing in the child hard-
ware thread may include the previously described wait
opcode (212) which will cause the processor to change the
state of the child hardware thread from the ephemeral run
state (206) to the wait state (204). In this way, a child hard-
ware thread may run to completion without the operating
system having any knowledge of the child hardware thread’s
operation.

From time to time, however, the child hardware thread may
need operating system support, or the child hardware thread
may be required for use by the operating system for some
other task. For example, a child hardware thread in the
ephemeral run state (206) may call an operating system func-
tion, the processor may receive an asynchronous interrupt of
the child hardware thread, thereby invoking an interrupt han-
dler of the operating system, or the child hardware thread may
cause an execution exception thereby invoking an interrupt
handler of the operating system (216), and so on as will occur
to readers of skill in the art. In each such case, the operating
system then creates, a canonical operating system thread
descriptor for the child hardware thread and the child hard-
ware thread returns to the run (202) state. The operating
system may create the child’s canonical operating system
thread descriptor from another operating system thread

US 9,009,716 B2

7

descriptor, such as the a thread descriptor of the user-level
process, or a thread descriptor of a software thread executing
in the parent hardware thread.

For further explanation, FIG. 3 sets forth a flow chart
illustrating an exemplary method for creating a thread of
execution in a computer processor according to embodiments
of'the present inventive subject matter. The method of FIG. 3
includes copying (302), by a hardware processor opcode
(102) called (318) by a user-level process (316), with no
operating system involvement, register contents (320) from a
parent hardware thread (120) to a child hardware thread
(122). In the method of FIG. 3, at the time the hardware
process opcode (102) is called (318) by a user-level process,
the child hardware thread (122) is in a wait state (204). Copy-
ing (302) register contents may includes copying the parent
hardware threads architectural registers, instructions stored in
the registers, variable values, instruction counter value, and
so on as will occur to readers of skill in the art.

The method of FIG. 3 also includes changing (304), by the
hardware processor opcode (102), the child hardware thread
(122) from the wait state (204) to an ephemeral run state
(206). Changing (304) the child hardware thread (122) from
the wait state (204) to an ephemeral run state (206) may be
carried out in various ways including, for example, by a
setting a pre-designated flag, flipping a bit in a well-known
location, or storing a predefined value in a register designated
for storing state information. In the method of FIG. 3, chang-
ing (304), by the hardware processor opcode (102), the child
hardware thread (122) from the wait state (204) to an ephem-
eral run state (206) includes setting (306), by the hardware
processor opcode (102) for the child hardware thread (122), a
flag (116) identifying the child hardware thread (122) as a
child and assigning (308), by the hardware processor opcode
(102), a unique thread identifier (106) to the child hardware
thread. Assigning (308) a unique thread identifier (106) to the
child hardware thread (122) may be carried out by storing an
integer in a register of the child hardware thread.

The method of FIG. 3 also includes setting (310), by the
hardware processor opcode (102) for the parent hardware
thread (120), a flag (106) indicating whether any child hard-
ware threads (122) were changed from the wait state (204) to
the ephemeral run state (206). Setting (310) the flag may be
carried out various ways including for example, by flipping a
bit in a condition code register designated for such a purpose,
by storing a value in a register designated for storing such
flag, and in other ways as will occur to readers of skill in the
art.

In the method of FIG. 3, the hardware processor opcode
(102) also includes an operand (322) specifying a maximum
number of child hardware threads to change from the wait
state to the ephemeral run state, and the method of FIG. 3
includes returning (312), by the hardware processor opcode
(102) to the user-level process (316), a number (108) of child
hardware threads (122) changed from the wait state (204) to
the ephemeral run state (206). A hardware processor opcode
may specify more child hardware threads to change from the
wait state to the ephemeral run state than are available in the
wait state or that are allowed, based on predefined rules, to
change at a given time. In this way, the hardware processor
opcode effectively creates as many child hardware threads as
are available, up to the maximum requested number, while
informing the hardware thread originally executing the hard-
ware processor opcode of the actual number of child hard-
ware threads created.

The method of FIG. 3 also includes setting (314), by the
hardware processor opcode (102) for the parent hardware
thread (120), a flag (110) identifying the parent hardware

5

10

15

20

25

30

35

40

45

50

55

60

65

8

thread (120) as a parent. The flag enables a thread to effi-
ciently—quickly and with low computational overhead—
determine the characterization of a hardware thread, whether
parent or child. The flag, for example, may be implemented as
a bit in a condition code register, which may be efficiently
compared directly by hardware.

As explained above withrespectto FIG. 2, a child hardware
thread, once in the ephemeral run state (206) may exit the
state and return to a run state (202) under several different
circumstances. These circumstances are described below in
further detail with regard to FIGS. 4, 5, and 6. FIG. 4, there-
fore, sets forth a flow chart illustrating a further exemplary
method for creating a thread of execution in a computer
processor according to embodiments of the present inventive
subject matter. The method of FIG. 4 is similar to the method
of FIG. 3, in that the method of F1G. 4 includes copying (302),
by a hardware processor opcode (102) called (318) by a
userlevel process (316), with no operating system involve-
ment, register contents (320) from a parent hardware thread
(120) to a child hardware thread (122), the child hardware
thread (122) being in a wait state (204); and changing (304),
by the hardware processor opcode (102), the child hardware
thread (122) from the wait state (204) to an ephemeral run
state (206).

The method of FIG. 4, differs from the method of FIG. 3,
however, in that the method of FIG. 4 includes calling (402),
by the child hardware thread, an operating system function
(406) and creating (404), by the operating system (404), a
canonical operating system thread descriptor (410) for the
child hardware thread (122). The operating system (404) may
create the child’s canonical operating system thread descrip-
tor (410) from another operating system thread descriptor
(408), such as a thread descriptor of a software thread execut-
ing in the parent hardware thread (120). As explained above a
canonical thread descriptor (410) is an operating system’s
description of a software thread of execution, its resources,
memory space, current variable values, context, and so on as
will occur to readers of skill in the art. Prior to creating a
canonical thread descriptor (410) for the child hardware
thread (122), the operating system has no knowledge that the
child hardware thread is executing instructions. By creating a
canonical thread descriptor, the child hardware thread—and
the software thread executing within the hardware thread—
effectively matures into a full-blow, operating system
acknowledged, maintained, and administered, thread of
execution.

For further explanation, FIG. 5 sets forth a flow chart
illustrating a further exemplary method for creating a thread
of execution in a computer processor according to embodi-
ments of the present inventive subject matter. The method of
FIG. 5 is similar to the method of FIG. 3, in that the method of
FIG. 5 includes copying (302), by a hardware processor
opcode (102) called (318) by a user-level process (316), with
no operating system involvement, register contents (320)
from a parent hardware thread (120) to a child hardware
thread (122), the child hardware thread (122) being in a wait
state (204); and changing (304), by the hardware processor
opcode (102), the child hardware thread (122) from the wait
state (204) to an ephemeral run state (206).

The method of FIG. 5, differs from the method of FIG. 3,
however, in that the method of FIG. 5 includes receiving
(502), by the computer processor, an asynchronous interrupt
(506) of the child hardware thread (122) thereby invoking an
interrupt handler (512) of the operating system and creating
(504), by the operating system, a canonical operating system
thread descriptor (510) for the child hardware thread (122).
The operating system may create the child’s canonical oper-

US 9,009,716 B2

9

ating system thread descriptor (510) from another operating
system thread descriptor (508). Examples of such asynchro-
nous interrupts (506) may include a quant timeout, a timer
interrupt, an external interrupt unrelated to the child hardware
thread that causes the OS to return the child hardware thread
to a run state (202), an inter-processor interrupts such as an
unexpected message from another processor, and so on as will
occur to readers of skill in the art.

For further explanation, FIG. 6 sets forth a flow chart
illustrating a further exemplary method for creating a thread
of execution in a computer processor according to embodi-
ments of the present inventive subject matter. The method of
FIG. 6 is similar to the method of FIG. 3, in that the method of
FIG. 6 includes copying (302), by a hardware processor
opcode (102) called (318) by a user-level process (316), with
no operating system involvement, register contents (320)
from a parent hardware thread (120) to a child hardware
thread (122), the child hardware thread (122) being in a wait
state (204); and changing (304), by the hardware processor
opcode (102), the child hardware thread (122) from the wait
state (204) to an ephemeral run state (206).

The method of FIG. 6, differs from the method of FIG. 3,
however, in that the method of FIG. 6 includes causing (602),
by the child hardware thread (122), an execution exception
(606) thereby invoking an interrupt handler (612) of the oper-
ating system and creating (604), by the operating system, a
canonical operating system thread descriptor (610) for the
child hardware thread (122). The operating system may cre-
ate (604) the child’s canonical operating system thread
descriptor from another operating system thread descriptor
(608). Examples of execution exceptions (606) may include a
memory fault, execution of an illegal instruction, a division
by zero, and so on as will occur to readers of skill in the art.

FIGS. 4, 5, 6, set forth various ways in which a child
hardware thread may be changed from the ephemeral run
state (206) to the run state (202). A child hardware thread
configured in accordance with embodiments of the present
inventive subject matter, however, may also change from an
ephemeral run state (206) to a wait state (204). For further
explanation therefore, FIG. 7 sets forth a flow chart illustrat-
ing a further exemplary method for creating a thread of execu-
tion in a computer processor according to embodiments of the
present inventive subject matter. The method of FIG. 7 is
similar to the method of FIG. 3, in that the method of FIG. 7
includes copying (302), by a hardware processor opcode
(102) called (318) by a user-level process (316), with no
operating system involvement, register contents (320) from a
parent hardware thread (120) to a child hardware thread
(122), the child hardware thread (122) being in a wait state
(204); and changing (304), by the hardware processor opcode
(102), the child hardware thread (122) from the wait state
(204) to an ephemeral run state (206).

The method of FIG. 7 differs from the method of FIG. 3,
however, in that the method of FIG. 7 includes executing
(704) a hardware processor opcode (702) in the child hard-
ware thread and returning (704), by the hardware processor
opcode executed in the child hardware thread (122), the child
hardware thread to the wait state (204). That is, in addition to
a hardware processor opcode executed in parent thread that
changes a state of a child thread from a wait state to an
ephemeral state, the method of FIG. 7 also includes a hard-
ware processor opcode executed in the child thread that the
changes the state of the child thread from the ephemeral state
back to the wait state. In this way, at the hardware processor
opcode level, without operating system interaction, a thread
of execution may be created in an available hardware thread

10

15

20

25

30

35

40

45

50

55

60

65

10

(ahardware thread in the wait state), executed in the hardware
thread, and the hardware thread may be returned to the wait
state for future availability.

In view of the explanations set forth above, readers will
recognize that the benefits of creating a thread of execution in
a computer processor according to embodiments of the
present inventive subject matter include:

Thread creation of a single thread is extremely lightweight,

involving no operating system overhead.

Thread creation of many threads may be carried out in
parallel and on demand, rather than serially for each of
the many thread; and

Thread creation occurs in the same amount of computer
time to create any number of child threads.

As will be appreciated by one skilled in the art, aspects of
the present inventive subject matter may be embodied as a
system, method or computer program product. Accordingly,
aspects of the present inventive subject matter may take the
form of an entirely hardware embodiment, an entirely soft-
ware embodiment (including firmware, resident software,
micro-code, etc.) or an embodiment combining software and
hardware aspects that may all generally be referred to herein
as a “circuit,” “module” or “system.” Furthermore, aspects of
the present inventive subject matter may take the form of a
computer program product embodied in one or more com-
puter readable medium(s) having computer readable program
code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable transmission medium or a computer
readable storage medium. A computer readable storage
medium may be, for example, but not limited to, an elec-
tronic, magnetic, optical, electromagnetic, infrared, or semi-
conductor system, apparatus, or device, or any suitable com-
bination of the foregoing. More specific examples (a non-
exhaustive list) of the computer readable storage medium
would include the following: an electrical connection having
one or more wires, a portable computer diskette, a hard disk,
a random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), an optical fiber, a portable com-
pact disc read-only memory (CD-ROM), an optical storage
device, a magnetic storage device, or any suitable combina-
tion of the foregoing. In the context of this document, a
computer readable storage medium may be any tangible
medium that can contain, or store a program for use by or in
connection with an instruction execution system, apparatus,
or device.

A computer readable transmission medium may include a
propagated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable transmission medium may be any computer
readable medium that is not a computer readable storage
medium and that can communicate, propagate, or transport a
program for use by or in connection with an instruction
execution system, apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present inventive subject matter may be written
in any combination of one or more programming languages,
including an object oriented programming language such as

US 9,009,716 B2

11

Java, Smalltalk, C++ or the like and conventional procedural
programming languages, such as the “C” programming lan-
guage or similar programming languages. The program code
may execute entirely on the user’s computer, partly on the
user’s computer, as a standalone software package, partly on
the user’s computer and partly on a remote computer or
entirely on the remote computer or server. In the latter sce-
nario, the remote computer may be connected to the user’s
computer through any type of network, including a local area
network (LAN) or a wide area network (WAN), or the con-
nection may be made to an external computer (for example,
through the Internet using an Internet Service Provider).

Aspects of the present inventive subject matter are
described above with reference to flowchart illustrations and/
or block diagrams of methods, apparatus (systems) and com-
puter program products according to embodiments of the
inventive subject matter. It will be understood that each block
of'the flowchart illustrations and/or block diagrams, and com-
binations of blocks in the flowchart illustrations and/or block
diagrams, can be implemented by computer program instruc-
tions. These computer program instructions may be provided
to a processor of a general purpose computer, special purpose
computer, or other programmable data processing apparatus
to produce a machine, such that the instructions, which
execute via the processor of the computer or other program-
mable data processing apparatus, create means for imple-
menting the functions/acts specified in the flowchart and/or
block diagram block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
inventive subject matter. In this regard, each block in the
flowchart or block diagrams may represent a module, seg-
ment, or portion of code, which comprises one or more
executable instructions for implementing the specified logi-
cal function(s). It should also be noted that, in some alterna-
tive implementations, the functions noted in the block may
occur out of the order noted in the figures. For example, two
blocks shown in succession may, in fact, be executed substan-
tially concurrently, or the blocks may sometimes be executed
in the reverse order, depending upon the functionality
involved. It will also be noted that each block of the block
diagrams and/or flowchart illustration, and combinations of
blocks in the block diagrams and/or flowchart illustration, can
be implemented by special purpose hardware-based systems
that perform the specified functions or acts, or combinations
of special purpose hardware and computer instructions.

It will be understood from the foregoing description that
modifications and changes may be made in various embodi-

10

20

40

45

12

ments of the present inventive subject matter without depart-
ing from its true spirit. The descriptions in this specification
are for purposes of illustration only and are not to be con-
strued in a limiting sense. The scope of the present inventive
subject matter is limited only by the language ofthe following
claims.

What is claimed is:

1. A method of creating a thread of execution in a computer
processor, the method comprising:

copying, as indicated by a hardware processor opcode, the

hardware processor opcode having been specified by a
user-level process, data from a first set of registers to a
second set of registers, wherein the first set of registers is
associated with a parent hardware thread, wherein the
second set of registers is associated with a child hard-
ware thread, wherein the first set of registers and the
second set of registers are located on the computer pro-
cessor, wherein the child hardware thread is in a wait
state; and

changing, as indicated by the hardware processor opcode,

the child hardware thread from the wait state to an
ephemeral run state, wherein the ephemeral run state
indicates a lack of operating system support structures
for the child hardware thread.

2. The method of claim 1 further comprising:

calling, by the child hardware thread, an operating system

function; and

creating, by the operating system, a canonical operating

system thread descriptor for the child hardware thread.

3. The method of claim 1 further comprising:

receiving, by the computer processor, an asynchronous

interrupt of the child hardware thread thereby invoking

an interrupt handler of the operating system; and
creating, by the operating system, a canonical operating

system thread descriptor for the child hardware thread.

4. The method of claim 1 further comprising:

generate, by the child hardware thread, an execution excep-

tion that invokes an interrupt handler of the operating
system; and

creating, by the operating system, a canonical operating

system thread descriptor for the child hardware thread.

5. The method of claim 1, wherein the hardware processor
opcode further comprises an operand specifying a maximum
number of child hardware threads to change from the wait
state to the ephemeral run state, the method further compris-
ing:

returning, as indicated by the hardware processor opcode

to the user-level process, a number of child hardware
threads changed from the wait state to the ephemeral run
state.

6. The method of claim 1 further comprising:

setting, as indicated by the hardware processor opcode for

the parent hardware thread, a flag indicating whether any
child hardware threads were changed from the wait state
to the ephemeral run state.

7. The method of claim 1 further comprising:

setting, as indicated by the hardware processor opcode for

the parent hardware thread, a flag identifying the parent
hardware thread as a parent.

8. The method of claim 1, wherein said changing, as indi-
cated by the hardware processor opcode, the child hardware
thread from the wait state to an ephemeral run state further
comprises setting a flag identifying the child hardware thread
as a child hardware thread.

9. The method of claim 1, wherein said changing, as indi-
cated by the hardware processor opcode, the child hardware
thread from the wait state to an ephemeral run state further

US 9,009,716 B2
13

comprises assigning a unique thread identifier to the child
hardware thread, wherein said assigning the unique thread
identifier to the child hardware thread comprises storing an
integer in a register of the child hardware thread.
10. The method of claim 1 further comprising: 5
returning, as indicated by a hardware processor opcode
executed in the child hardware thread, the child hard-
ware thread to the wait state.

#* #* #* #* #*

14

