a2 United States Patent

Bohrer et al.

US008893153B2

US 8,893,153 B2
*Nov. 18, 2014

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(63)

(1)

(52)

(58)

INTER-THREAD DATA COMMUNICATIONS
IN A COMPUTER PROCESSOR

Applicant: International Business Machines
Corporation, Armonk, NY (US)

Inventors: Patrick J. Bohrer, Cedar Park, TX (US);
Ahmed Gheith, Austin, TX (US); James

L. Peterson, Austin, TX (US)

International Business Machines
Corporation, Armonk, NY (US)

Assignee:

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 14/052,335

Filed: Oct. 11, 2013

Prior Publication Data
US 2014/0040901 A1 Feb. 6, 2014
Related U.S. Application Data

Continuation of application No. 12/958,980, filed on
Dec. 2, 2010, now Pat. No. 8,572,628.

Int. Cl1.
GO6F 9/54 (2006.01)
GO6F 9/46 (2006.01)
U.S. CL

CPC . GO6F 9/46 (2013.01); GOGF 9/546 (2013.01)

USPC o, 719/313;712/225
Field of Classification Search

CPC e GOGF 9/546
USPC oo, 712/214, 215, 225,719/313

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
5,815,727 A 9/1998 Motomura
7,861,249 B2 12/2010 Jiang et al.
8,572,628 B2 10/2013 Bohrer et al.
2004/0268093 Al 12/2004 Samra et al.
2009/0216993 Al 8/2009 Venkumahanti et al.
2009/0257450 Al 10/2009 Sirigiri et al.
2009/0300651 Al 12/2009 IJiang et al.
2010/0005277 Al 1/2010 Gibert et al.
2012/0144395 Al 6/2012 Bohrer et al.
FOREIGN PATENT DOCUMENTS
CN 1168730 12/1997
EP 1316898 6/2003
WO 2008054941 5/2008
OTHER PUBLICATIONS

“U.S. Appl. No. 12/958,980 Office Action”, Mar. 1, 2013, 11 pages.

(Continued)

Primary Examiner — Brian W Wathen
(74) Attorney, Agent, or Firm — DeLizio Gilliam, PLLC

&7

A first set of one or more hardware threads for receiving
messages sent from hardware threads are registered. After
receiving indications of a message location value and a num-
ber, the message location value is increments and sent to a
different hardware thread of the first set of one or more
hardware threads until the message location value has been
incremented the number of times or a criterion for interrupt-
ing the incrementing and sending is satisfied. An actual num-
ber of times the message location value was incremented is
indicated to a hardware thread that sent the indications of the
message location value and the number.

ABSTRACT

20 Claims, 9 Drawing Sheets

ooy Threads 227

Saing Teood 220 |

fiier: Thisad
sarms.
JContronier

Fragisisr Reoving Throads 202

Registrad Rensiving

Receive Susafcations O A Huiber OF Derved Mantdnes]
0 Be Sent To Renehing Tzoads At A Base Vakie 25

o Derived

Generaie, By The er tread Cormommicelions Controtier,
The Derived Messag

Derived

Hesages™ =

B

Sepding Thiead 220
/1o, tags. Sant 7
[/

US 8,893,153 B2
Page 2

(56)

References Cited

OTHER PUBLICATIONS

Marr, Deborah T. et al., “Hyper-Threading Technology Architecture
and Microarchitecture”, Publisher Intel Technology Journal; vol. 06,

Issue

01

www.intel.com/technology/itj/2002/volume06issue01/

vol6issl__hyper_threading technology.pdf Feb. 14, 2002 , 66
pages.

Reyes, Victor et al., “A Multicast Inter-Task Communication Proto-
col for Embedded Multiprocessor Systems”, Proceedings of the 3rd

IEEE/ACM/IFIP international conference on Hardware/software
codesign and system synthesis 2005 , pp. 267-272.

U.S. Patent Nov. 18, 2014

¥
§
§
§
4
ke
i
]
§
§
3
14
%
14
%
t
14
t
4
t
t
t
t
¢
¢
¢
¢
¢
¢
¢
¢
¢
$
§
H
13
¥
4
1
§
4
[
i
3
3
i
4
14
1
]
14
3
14
H
%
14
t
4
t
¢
¢
¢
¢
¢
¢
¢
¢

b ok st wlt sl sk il sl el e aln oln- s e aln sln sle alenle. e lale lnle ile lae inl cnle te dee el cle de dne sl dote ot snls ool e s oeb ol ok ok ol ol o el wl olei o ol wln sla s als sle e e ale e lnle iale nle e

Processor 156

Regs. 188 1 i Regs. 1301 Regs. 132
Send RECY RECY
Cpepde Opcode Opcods

Ho, Msps, Channst Channg
ToBeSentff §f 148 HgE 148

4 Derived § | Cerivad
Base sy, 108 Mag 430
RiSd) T |

Channg

il i

No. isga. 4 T Thresa] W Trread

ntar-Threas Commmun
Controllar 142

HW Thread
120

Caran. HO
Adapter Adapter

Dacada Dispaich Exgeution 182
134 438 Lnits 140 §

Devices 181

Dxpansion Bus 188

User input

Sheet 1 of 9 US 8,893,153 B2
¥
Computer 152 |
{
i
Regs. 13 !
i
RECY ;
Opeode i
114 RAM 168 :
Chanriel Usardevel :
48 Application !
Derivad 148 ;
Msg. 132 i
- Operating }
int. 113 Bystem !
154 ;
Video] !
o ¥
HW Theead] | Memayy ‘%’%‘8’ !
126 Bus '
» 18 l :
i
i
cakons s i
MMU | panter] |
144 col !
. —— oo 15811
Front Sids Bua !
i
i
1
4
1
)
i
i
E
i
i}
%
%
%
%
§
]
]

Drata Corams, Network 100

FIG. 1

U.S. Patent

Nov. 18, 2014 Sheet 2 of 9 US 8,893,153 B2

Raceling Threads 222 Sending Thesad 220

7 SEND Qprode
Z:iﬁ

hiter- Thrasd
Cornms.
Controller

142

Register Revaiving Thraads 204

Y
Base Vaiue 228

Hagistered Roceiving . .
- - Kumbar OF Msgs.
Threads 220
/ hreads 2 To Ba Sent 228

Recsive Spacifications Of A Number Of Darived Messages
To Be Sent To Receiving Throads And A Base Value 204 Lo

v

Ganerate, By The Infar-thread Communications Controlier,
The Dadved Messages 208

incramerd The Base Vaive Crice For Each Regivtend

Reosiving Thread So That Tach Derved Message s A

Single htegey Ag A Separate ncroment TF The Base
Value 208

y

Send, To Each Regisisred Rucelving Thread, A Derdved

Message 210

'

Redurn, To The Sending Thread, An Actual Mumber Of
Messages Revalvad By Recehding Threads 212

Terivad
Messages

AL

foc's Of Base
Yslue 232 /

Receiving Threats 282

Sending Thwead 220

/ No. Mags. Sent /
230

FIG. 2

U.S. Patent Nov. 18,2014 Sheet 3 of 9 US 8,893,153 B2

- - Sending Trread 220
magna; identifving SEND Bpoode
Value 304 218
Inter- Thraad ¥
Cans Register Recetdng Threads 202 Base vaiue 225
controter agisier Receiving Theeads 202 ase Value 228
142 Nurnber OF Msgs.
! To Be Sent 228
Rﬁg%@ﬁfﬁi&;mg / Channel idenlifying
Sk Valus 308
Recsive Specifioations OF A Numnbsy OF Detvad Messages
Tos Be Sent To Recehing Threads And A Base Valus 204 Lugeeet

v

Generate, By The Inter-thread Communications Gontroller, The Derived Messeges 208

Incrament The Bage Vaiug Once For Egch Registered Recelving Thraad So That Each
Darived Massage 5 A Single bleger As A Separate Incrament Of The Base Value 208

Y

Send & Derved Message 218

Send The Denved Messages Ordy To Fecelving |
Trreads Whose RECEIVE Opoodes Specify The
Channg! Specified By The SEND Opcode 307 ¢

'

Retum, To The Sending Thread, An Actual Number OF
Messages Receivet! By Reosdving Threads 242

Ravwiving Threads 222

Serding Thread 220
Detived / No. Msgs. Sent /
Messages W 230
4 ,

FIG. 3

U.S. Patent Nov. 18,2014 Sheet 4 of 9 US 8,893,153 B2

Sending Thread 220

Virugl Memory Address >
. o / / SEND Cpi /

Receiving Threads 222

Conams. Tr— - : : -
Santrolier Regiater Bacehing Threads 202 Rase Vaise 228

142 Number OF Msgs.
To Ba Sent 238

Registered Recebving :
~ h Virtual Memory
/ Threads 222 Al 406

liﬁi&ﬂ?‘sfﬁﬁd ¥ ¥

Receive Spacifications Of & Number Of Derived Massages
To Ba Sent To Recaiving Thraatds Ard A Bass Value 24 L

Y

Ganerate, By Tha inter-fyead Commusicalions Controllar, The Dedved Messagas 306

increment The Base Value Once For bach Registerad Renaing Thrasd 50 That Each
Dodver Message is A Single Integer As A Separate increment Of The Base Valus 208

¥

Sert A Derived Message 210

Sand The Dertvad Messagas Unly To Recelving Threads Whose
- RECENVE Opcoda Specifies & Virhsal Memory Address That
Maps To & Hardware Memiory Addmss Alse Mapped To The
Virtual Memary Addrass Specilied By The SEND Opoode 407

Y

Ratum, To The Sending Thresd, An Actpal Number Of
Messages Rensivad By Receddng Thraads 242

Receiving Hweads
ing's Of Hage
Value 232

Sanding Thread 220

/ 0. Mcg:: Sent /

FIG. 4

U.S. Patent Nov. 18,2014 Sheet 5 of 9 US 8,893,153 B2

Receiving Threads 222 . : Sending Thvead 220
Virtual s’*«ﬁesx;mry Adcqfeay SEND oods
inter-Thread l
- , Base Valug 22
Eﬁm& Register Recsiving Threads 202 ase Volue 220
onitroliar Number Of Mags.
142 ¥ T Be Sent 228
; acaivi
/ ﬁegﬁ;’i&? égﬁg g Yirtual Memary
- * Agdr. 306

Recsiva Spediiications OF A Numbar OF Davived Messages

To Be Sent To Receiving Theats And A Bass Value 24
Generals, By The Interthread Communicationa Conlroller, The Derived Measages 208
increment The Base Value Once For Bach Registersd Recehving Thrend S¢ Thet Each
Derved Message s A Single Intuger As A Separate Invremwnt Of The Base Valus 208

Beng A Derived Message 210
Check The Memory Management Units For Access Permissions 502
] T Bend Tre Terved Hessages Unly From A Sending Thraad Havng
Write Perrissions On The Hardware Memory Address And Only To
Reoebdng Threads Having Raad Permissions On The Hardware
Mamory ddraas OF The Channal 508
Rehar, To The Sanding Thead, An Aol Number OF
Messanss Recalvad By Revabving Threads 212 ¥
MU P
Y Py y oy iﬁé
Reppd «s' \Thsaads 228 Sending Thread 230
In¢'s Of Base oo
Darivad , Vaiue 232 / Mis. ?»’?;%& Sent /
hessagas™ A £ FIG. 5

214

U.S. Patent Nov. 18,2014 Sheet 6 of 9 US 8,893,153 B2

Reveiving Threads 228
RECY Opeades /f
28

Sending Thread 220

/ SEND Opooda /

irger Thread ¥

Comms,
Cordrolier
142

Regisier Receiving Threads 202

Y
Base Value 228
/ Registered Receing Nurnser Of Msgs
Threas | Y
Threats 22 To e Sent 228

Racaive Specificalions Of A Number O Darived Messages
To Be Sent T Receiving Thresds And A Base Value 204 |agemd

v

Generate, By The inferthepad Communitations Conlralier, The Darived Messages 208

Increment The Base Valus Once For Each Registersd Rensiving Thread So That Each
Derivad Mosaage s A Single Integar A3 A Separale Incremment OF The Base Value 208

¥

Send, To Each Registered Recehving Thread, A Derved
Message 210

b
intermipt §04

+
H

Retum, To The Sending Thread, An Actug Number Of
Messages Received By Receiving Threads 212
Retuen Upan An Gooureencs OF An nterrugd, The Base
Yahus Plus The Number Of Derivad Messagss Sent To
Racaiving Threads Prior To The interngpt 602

Dervad

Massagas

214

Feosiving Threads 282

Inc's Of Base
Value 232 /

Sending Thwead 220

Mo, Mags. Sent
230

FIG. 6

U.S. Patent Nov. 18,2014 Sheet 7 of 9 US 8,893,153 B2

Raecedving Threads 234 e -
RECY Opcodas Sending Thread MQ
. / SERD f)zmde
Inter-Thrasdd
Register Recgiving Threads 202 Comms,
Atviae Each ‘ C«cnimiiei
Reoshing Thread | 142
ThatNo Message s {
Available For The | ewopt
Recsiviog Thread #f | 108 ‘ - ¥
eceiving Thread : Registerat Recaiving -
§ No Messags s Serer Thraads 22 Base Value 225
{ Availabie For The Hummber Of Misgs.
¢ Recehing Thread Te Be Sent 208
Ugon Occurrencs Of
A intaraupt 202

Receive Spacifications OF A Numbsr Of Darived Messapes
To Be Sant To Receiving Thraads Ang A Base Valus 204

Generate, By The Inter-fivead Communications Condroler, The Denved Messages 208

increment The Base Value Once For Each Regiversd Raceiving Thread So That Each
Derived Message Ig A Single integer Az A Separate incrament Of The Sase Value 208

¥

Send, To Each Registerad Reosiving Thread, A Derlved Message 218

'

Return, To The Sending Tiwead, An Actual Number Of
Messages Recelved By Recsiving Threads 212

Recaiving Threads 222 p s
nc's Ot Base Jf Sending Thisad 220
Derived Valus 238 / he. "33{?3 Sent
;&(TS TR g PR P PERRE e
fegsages FiG. 7

13

U.S. Patent Nov. 18,2014 Sheet 8 of 9 US 8,893,153 B2

Repphing Thveats 282

RECV Dpoodes /

Sending Thread 220
J SEND Ogeode /

218

irter-Thread)

Ragister Recehving Threads 202 Comms,
Controlier

1321

i Advise Bach
Racsiving Thread
That No Mossage I elhe-envy
Avallable For The | Timeout
Receiving Thread ¥ 804
Ko Message Is
Available For The
Receiving Thread
Through A Pradefined
Period OF Time After No Timeod
Registration 802 06

'

Receive Specifications Of A Numbser OF Derved Messages
Te Be Sent To Recelving Threads And A Base Value 204

Gengrate, By The Inter-thread Communications Cordeolier, The Denived Messages 208
Increment The Base Yelue Onoe For Each Registered Raceiving Thread Bo That Each
Derivad Mossage Is A Single Intager As A Separale Increment OFf The Base Value 208

¥

Send, To Each Feyisters Recelving Threed, A Darived Message 240

v

Retura, To The Sending Thvead, An Actual Muraber Of
Measagey Recaived By Reveiving Thrawds 212

¥

[Registered Recsiving Bage Value 220
Trseads 222 Numbar Of ¥isgs.

To Ba St 228

Frenw

a

Receiving Threads 222 ————
s Of Base Y Sangding Thread 220

Valug 23 No. Mags. Sent

Megsages o a2 FiG. 8

U.S. Patent Nov. 18,2014 Sheet 9 of 9 US 8,893,153 B2
Recaiving Threads 222 — .
RECY Opoodes /7 Sending Thrsad 220
28 SEND Opoode /
................................ 8
friar-Thread - ot
Comims. Register Receiving Threads 202) 4
Controliar ¥ Base Value 228
142 Registered Racsiving Number Of Mags.
Threads 222 To Be Sent 228
¥

Recaive Spacifications Of A Number 0f Derivad Messages
To Ba Sent To Recehdng Threads And A Base Value 204

Y

Generate, By The inter-Hlvead Compumications Conbralier, The Divived Massages 208

ncrement The Base Valos Onta For Each Registenad Raceiving Thread 8o That Each
Derived Message Is A Single Infeger As A Separats Increment OF The Rase Value 208

¥

Sund, Tu Each Registured Recsiving Thread, A Derived Message 210

Y

i o o e A e

Retum The Base Value Plus The Number Of Derived Measagas Senl § A Sum Of The
Base Valus And The Number Of Derived Massags Bent 13 Equal To The Number Of
Derived Message To Be Sent Upcode 812

Timeout 3

~~~~~~~~~

Oncode, The Base Value Plus The Number Of Derlved Messages Sent, I A Sum Of The
Base Value And The Nuber Of Deriver! Massages Sent is Less Than The Number Of
Derived Messages To Be Sent 908

Relturn An Actusl Number Of Messagss Racelved By Repeiing Threads 212

Recahing Thrasds 322

ing's Of Base
Value /

Sending Thread 220

Np. Mags. Sent
230

/

FG. 9



US 8,893,153 B2

1
INTER-THREAD DATA COMMUNICATIONS
IN A COMPUTER PROCESSOR

RELATED APPLICATIONS

This continuation application claims the benefit of U.S.
patent application Ser. No. 12/958,980 filed Dec. 2, 2010.

BACKGROUND

1. Field of the Invention

The field of the invention is data processing, or, more
specifically, methods, apparatus, and products for inter-
thread data communications in a computer processor.

2. Description of Related Art

Computers are becoming more and more sophisticated and
powerful. Computer software increasingly requires greater
processing power from computer hardware and complexity of
computer hardware increases accordingly. Current computer
processors, for example, include a great number of hardware
threads within which a great number of software threads may
be executed. Presently, communication between such hard-
ware threads is burdensome, time consuming, resource con-
suming, and inefficient.

SUMMARY OF THE INVENTION

Embodiments include a method comprising registering a
first set of one or more hardware threads for receiving mes-
sages sent from hardware threads, The method also includes
incrementing a message location value and sending the incre-
mented message location value to a different hardware thread
of the first set of one or more hardware threads until the
message location value has been incremented a number of
times or a criterion for interrupting the incrementing and
sending is satisfied. The incrementing and sending occurs
after receiving indications of the message location value and
the number. The method also includes indicating, to a hard-
ware thread that sent the indications of the message location
value and the number, an actual number of times the message
location value was incremented.

The foregoing and other objects, features and advantages
of the invention will be apparent from the following more
particular descriptions of exemplary embodiments of the
invention as illustrated in the accompanying drawings
wherein like reference numbers generally represent like parts
of exemplary embodiments of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 sets forth a network diagram of a system for inter-
thread data communications in a computer processor accord-
ing to embodiments of the present invention.

FIG. 2 sets forth a flow chart illustrating an exemplary
method for inter-thread data communications in a computer
processor according to embodiments of the present invention.

FIG. 3 sets forth a flow chart illustrating an exemplary
method for inter-thread data communications in a computer
processor according to embodiments of the present invention.

FIG. 4 sets forth a flow chart illustrating an exemplary
method for inter-thread data communications in a computer
processor according to embodiments of the present invention.

FIG. 5 sets forth a flow chart illustrating an exemplary
method for inter-thread data communications in a computer
processor according to embodiments of the present invention.

10

15

25

30

40

45

50

55

2

FIG. 6 sets forth a flow chart illustrating an exemplary
method for inter-thread data communications in a computer
processor according to embodiments of the present invention.

FIG. 7 sets forth a flow chart illustrating an exemplary
method for inter-thread data communications in a computer
processor according to embodiments of the present invention.

FIG. 8 sets forth a flow chart illustrating an exemplary
method for inter-thread data communications in a computer
processor according to embodiments of the present invention.

FIG. 9 sets forth a flow chart illustrating an exemplary
method for inter-thread data communications in a computer
processor according to embodiments of the present invention.

DETAILED DESCRIPTION OF EXEMPLARY
EMBODIMENTS

Exemplary methods, apparatus, and products for inter-
thread data communications in a computer processor in
accordance with the present invention are described with
reference to the accompanying drawings, beginning with
FIG. 1. FIG. 1 sets forth a network diagram of a system for
inter-thread data communications in a computer processor
according to embodiments of the present invention. The sys-
tem of FIG. 1 includes automated computing machinery com-
prising an example computer (152). The computer (152) of
FIG. 1 includes at least one computer processor (156) or
‘CPU” as well as random access memory (168) (‘RAM”)
which is connected through a high speed memory bus (166)
and bus adapter (158) to processor (156) and to other com-
ponents of the computer (152).

The example processor (156) of the computer (152) in the
system of FIG. 1 includes multiple hardware threads (120,
122, 124, and 126) of execution. Hardware threads provide
physical means by which computer program instructions of
software threads are executed. A software thread is the small-
est unit of processing that can be scheduled by an operating
system for execution on a processor. A software thread is
typically contained inside a process. Multiple software
threads can exist within the same process and share resources
such as memory, while different processes do not share these
resources. In particular, the software threads of a process
share the process’s instructions and context—values vari-
ables have at any given moment in execution. A ‘hardware’
thread, by contrast, is implemented in hardware of a computer
processor and executes instructions of software threads. That
is, support for a hardware thread is built into the processor
itself in the form of a separate architectural register set for
each hardware thread, so that each hardware thread can
execute simultaneously with no need for context switches
among the hardware threads. Each such hardware thread can
run multiple software threads of execution implemented with
the software threads assigned to portions of processor time
called ‘quanta’ or “time slots” and context switches that save
the contents of a set of architectural registers for a software
thread during periods when that software thread loses posses-
sion of'its assigned hardware thread. In the example of FIG. 1,
each of the hardware threads (120, 122, 124, and 126) has a
corresponding set of registers (128, 130, 132, and 134).

In the example of FIG. 1, computer program instructions
may be executed within a hardware thread (120,122, 124, and
126) through use of an instruction decoder (136), an instruc-
tion dispatcher (138), and execution units (140). An instruc-
tion decoder (136) is a network of static and dynamic logic
within the processor (156) that retrieves instructions from
registers in the register sets (128, 130, 132, and 134) and
decodes the instructions into microinstructions for execution
on execution units (140) within the processor. An instruction



US 8,893,153 B2

3

to be decoded for execution, for example may include an
opcode (operation code). An opcode is the portion of a
machine language instruction that specifies the operation to
be performed. Apart from the opcode itself, an instruction
may also have one or more parameters, also called operands,
on which the operation should act, although some operations
may have implicit operands or none at all. Depending on the
architecture of the processor upon which the opcode is
decoded and executed, the operands may be register values,
values in a call stack, other memory values, I/O ports, and the
like. Once decoded, execution units (140) execute the micro-
instructions. Examples of execution units include LOAD
execution units, STORE execution units, floating point
execution units, execution units for integer arithmetic and
logical operations, and so on. The computer processor (156)
in the example of FIG. 1 also includes an instruction dis-
patcher (138) that arbitrates, in the presence of resource con-
tention, priorities for dispatch of instructions from the hard-
ware threads (120, 122, 124, and 126) of execution. The
instruction dispatcher (138) is a network of static and
dynamic logic within the processor (156) that dispatches
microinstructions to the execution units (140) in the processor
(156).

Each hardware thread (120, 122, 124, and 126) in the
example of FIG. 1 is operatively coupled for data communi-
cations through an inter-thread communications controller
(142). In the system of FIG. 1, the example inter-thread com-
munications controller (142) is a network of static and
dynamic logic within the processor (156) configured for
inter-thread data communications in accordance with
embodiments of the present invention. The inter-thread data
communications controller (142) in the example of FIG. 1
administers inter-thread data communications in the com-
puter processor (156) in accordance with embodiments of the
present invention by, among other actions, registering,
responsive to one or more RECEIVE opcodes (114), one or
more receiving threads (122, 124, and 126). A receiving
thread, as the term is used in this specification, refers to a
hardware thread that executes a RECEIVE opcode (114). An
example RECEIVE opcode (114) may be implemented as
follows: recv. rt, where the operand ‘rt’ specifies a register in
which the inter-thread data communications controller (142)
is to store a message sent from a sending thread to the receiv-
ing thread executing the example RECEIVE opcode.

In some embodiments, such as those set forth in the
example of FIG. 1, each RECEIVE opcode (114) also speci-
fies a channel (148). A channel as the term is used in this
specification refers to an effective, or virtualized data com-
munications coupling, for purposes of inter-thread data com-
munications, between sending threads and receiving threads.
Such a coupling need not be a direct physical coupling, but is
instead, an abstraction of a physical coupling; a virtualized
data communications channel between a transmitter (sending
thread) and receiving (receiving thread). In the example of
FIG. 1, and as described below in greater detail, the inter-
thread communications controller (142) is configured to
effectively virtualize physical communication connections
between a sending and receiving thread through the use of
such channels. A channel may be specified as a value—an
integer, memory address, or other channel identifying value.
In some embodiments a channel may be specified virtual
memory addresses that map to a same hardware memory
address for all threads using the same channel. In embodi-
ments in which sending and receiving threads specify chan-
nels, the inter-thread communications controller (142) is con-
figured to allow communications between a sending and
receiving thread that specify the same channel—as if the two

10

15

20

25

30

35

40

45

50

55

60

65

4

threads were directly physically coupled. Conversely, when a
sending thread and receiving thread specify different chan-
nels, the inter-thread communications controller (142) is con-
figured to prohibit communications between the two threads.
Described here is but one example use among many possible
uses of channels in inter-thread data communications accord-
ing to embodiments of the present invention. Further
examples are described below.

A hardware thread that executes a SEND opcode (102) is
referred to in this specification as a ‘sending’ thread. In inter-
thread data communications according to embodiments of the
present invention, the example inter-thread communications
controller (142) also receives, from a SEND opcode (102) of
a sending thread (120), specifications of a number (104) of
derived messages (108, 110, and 112) to be sent to receiving
threads and a base value (106). In embodiments in which the
inter-thread communications controller (142) is configured to
administer communications in accordance with channels,
such as the embodiments set forth in the example of FIG. 1,
the SEND opcode (102) may further specify a channel (148).

Data communications messages transmitted among hard-
ware threads in accordance with embodiments of the present
invention are descried in this specification as ‘derived’ mes-
sages in that the content of such messages is derived from the
base value provided by the sending thread. Such derivation of
messages is described in greater detail below. The number
(104) of derived message to be sent may be a value stored in
a register (128) of the sending thread (120) or other memory
location and the specification of the SEND opcode (102) of
the number (104) of derived messages to be sent may be
implemented as an operand or parameter of the SEND opcode
identifying the register (128) or memory location storing the
value. For a number of reasons, some of which are described
below, the inter-thread communications controller (142) may
send only a portion of the specified number of derived mes-
sages to be sent. A sending thread, for example, may request
1000 messages to be sent, but the inter-thread communica-
tions controller (142) may only send 100 of those 1000
requested messages.

The base value (106) may be an integer value, such as zero
or some memory address, stored in a register or other memory
location, where the specification of the base value (106) in the
SEND opcode may be implemented as an operand or param-
eter of the opcode identifying the register or memory location
storing the base value. Consider, as an example of a SEND
opcode configured for inter-thread communications carried
out according to embodiments of the present invention, the
following opcode: send. base, limit, chan. In this example
opcode the operand ‘base’ specifies a register storing, as the
base value (106), an integer value, the operand ‘limit’ speci-
fies a register storing, as the number (104) of derived mes-
sages to be sent, another integer value, and the operand ‘chan’
specifies a register storing, as a channel, a channel identifying
value, such as a memory address.

As explained below in detail the inter-thread communica-
tions controller increments the base value once for each
derived message sent to a registered receiving thread. As
such, in some embodiments, the ‘limit’ specifies the number
of messages to be sent as a maximum increment of the base
value rather than an absolute number of messages to be sent.
Consider, for example, a base value of 5 and a limit of 10. In
this example, when the limit specifies a number of messages
to be sent as a maximum increment of the base value, the
number of messages to be sent is 5, not 10.

In inter-thread data communications according to embodi-
ments of the present invention the example inter-thread com-
munications controller (142) of FIG. 1 also generates the



US 8,893,153 B2

5

derived messages. The inter-thread communications control-
ler (142) generates the derived messages by incrementing the
base value (106) once for each registered receiving thread so
that each derived message (108, 110, and 112) comprises a
single integer (109, 111, and 113) as a separate increment of
the base value (106). Consider, for example a SEND opcode
specifying four derived messages to be sent and a base value
of zero. In such an example, the inter-thread communications
controller (152) may increment the base value to an integer of
one for a first derived message, increment the value again to
an integer of two for a second derived message, increment the
value again to an integer of three for a third derived message,
and increment the value again to an integer of four for a fourth
derived message. Each derived message is a separate and
distinct integer from other derived messages.

From the perspective of the inter-thread communications
controller each generated derived message comprises an inte-
ger value. That is, the message is the integer itself. From the
perspective of the receiving hardware thread, however, the
integer received responsive to a SEND opcode may be used as
a pointer to a memory location storing data to be processed,
may be a value of a variable, may be an array index, and so on
as will occur to readers of skill in the art. The registered
receiving threads, for example, may use the derived mes-
sage—the integer value received from the inter-thread com-
munications controller (142)—to retrieve other data. In this
way, a sending thread may transfer a relatively large amount
of'data to a receiving thread by sending only an integer value,
a relatively small amount of data, to the receiving thread.

In inter-thread data communications according to embodi-
ments of the present invention the example inter-thread com-
munications controller (142) of FIG. 1 also sends, to each
registered receiving thread, a derived message. That is, once
the inter-thread communications controller (142) generates
one or more derived messages, the inter-thread communica-
tions controller (142) sends the derived messages to regis-
tered threads. Sending the derived messages may be carried
out by storing the messages in a register of each thread—a
register specified as an operand of the RECEIVE opcode—
and setting a flag associated with the receiving thread, desig-
nated for such purpose. An example of flag may be, for
example, one or more bits in the receiving thread’s condition
code register.

In embodiments in which the sending thread (120) and
receiving threads (122, 124, and 126) specify a channel (148),
the inter-thread data communications may be configured to
send the derived messages (108, 110, and 112) only to receiv-
ing threads whose RECEIVE opcodes specify the channel
specified by the SEND opcode. In embodiments in which
channels are specified by virtual memory addresses that map
to a same hardware memory address for all threads using the
same channel the inter-thread data communications control-
ler (142) may be configured to send the derived messages
(108, 110, and 112) only to receiving threads whose
RECEIVE opcodes specity the virtual memory address speci-
fied by the SEND opcode.

In some embodiments, such as those set forth in the
example of FIG. 1, the inter-thread communications control-
ler (142) may be operatively coupled to one or more memory
management units (144) serving the hardware threads (120,
122, 124, and 126). A memory management unit is a com-
puter hardware component responsible for handling accesses
to memory requested by a CPU. The memory management
unit’s functions include translation of virtual addresses to
physical addresses (i.e., virtual memory management),
memory protection through access permissions, cache con-
trol, bus arbitration, and, in some computer architectures,

5

10

15

20

25

30

35

40

45

50

55

60

65

6

bank switching. In embodiments in which channels are speci-
fied by virtual memory addresses that map to a same hardware
memory address for all threads using the same channel the
inter-thread data communications controller (142) may be
further configured to check the memory management units
(144) for access permissions and send the derived messages
(108,110, and 112) only from a sending thread (120) having
write permissions on the hardware memory address and only
to receiving threads (122, 124, and 126) having read permis-
sions on the hardware memory address of the channel. In this
way—through memory read and write access permissions in
the MMU (144) user—level processes may effectively set
communications restrictions among hardware threads (120,
122, 124, and 126).

In inter-thread communications according to embodiments
of the present invention the example inter-thread communi-
cations controller (142) of FIG. 1 also returns, to the sending
thread (120), an actual number (116) of derived messages
received by receiving threads. As explained above, in some
instances the inter-thread communications controller (142)
does not send the requested number of derived messages to
receiving threads. In the example of FIG. 1, the inter-thread
communications controller (142), then, is configured to
report the number of derived messages actually sent. In this
way, the sending thread may determine whether to reissue the
SEND opcode. In the example SEND opcode above, an oper-
and specifies a register ‘rt” in which to store the actual number
of message sent by the inter-thread communications control-
ler (142). In this example, the inter-thread communications
controller (142) may return the actual number of derived
messages sent by maintaining a counter of the number of
derived messages sent and storing the value of the counter
upon the last derived message sent in the ‘rt’ register and
setting a flag indicating message send completion. The flag
may, for example, be one or more bits of the sending thread’s
(120) condition code register set.

Stored in RAM (168) of the computer (152) is an example
user-level application (146), a module of computer program
instructions for user-level data processing tasks. Examples of
user-level applications (146) include word processing appli-
cations, spreadsheet applications, database management
applications, multimedia library applications, multi-media
editing applications, and so on as will occur to readers of skill
in the art. A process for the user-level application (146) is
instantiated and maintained in the operating system (154)
with one or more software threads of execution. The operat-
ing system (154) administers execution of the user-level
application (146), by scheduling the software threads for
execution on the computer processor (156), within the hard-
ware threads (120, 122, 124, and 126). Operating systems
useful inter-thread data communications in a computer pro-
cessor according to embodiments of the present invention
include UNIX™, Linux™, Microsoft XP™, AIX™, [BM’s
15/0S™, and others as will occur to those of skill in the art.
The operating system (154) and user-level application (146)
in the example of FIG. 1 are shown in RAM (168), but many
components of such software typically are stored in non-
volatile memory also, such as, for example, on a disk drive
(170).

The computer (152) of FIG. 1 includes disk drive adapter
(172) coupled through expansion bus (160) and bus adapter
(158) to processor (156) and other components of the com-
puter (152). Disk drive adapter (172) connects non-volatile
data storage to the computer (152) in the form of disk drive
(170). Disk drive adapters useful in computers for inter-
thread data communications in a computer processor accord-
ing to embodiments of the present invention include Inte-



US 8,893,153 B2

7

grated Drive Electronics (‘IDE’) adapters, Small Computer
System Interface (‘SCSI”) adapters, and others as will occur
to those of skill in the art. Non-volatile computer memory also
may be implemented for as an optical disk drive, electrically
erasable programmable read-only memory (so-called
‘EEPROM’ or ‘Flash’ memory), RAM drives, and so on, as
will occur to those of skill in the art.

The example computer (152) of FIG. 1 includes one or
more input/output (‘1/0”) adapters (178). 1/O adapters imple-
ment user-oriented input/output through, for example, soft-
ware drivers and computer hardware for controlling output to
display devices such as computer display screens, as well as
user input from user input devices (181) such as keyboards
and mice. The example computer (152) of FIG. 1 includes a
video adapter (209), which is an example of an 1/O adapter
specially designed for graphic output to a display device
(180) such as a display screen or computer monitor. Video
adapter (209) is connected to processor (156) through a high
speed video bus (164), bus adapter (158), and the front side
bus (162), which is also a high speed bus.

The exemplary computer (152) of FIG. 1 includes a com-
munications adapter (167) for data communications with
other computers (182) and for data communications with a
data communications network (100). Such data communica-
tions may be carried out serially through RS-232 connections,
through external buses such as a Universal Serial Bus
(‘USB’), through data communications networks such as IP
data communications networks, and in other ways as will
occur to those of skill in the art. Communications adapters
implement the hardware level of data communications
through which one computer sends data communications to
another computer, directly or through a data communications
network. Examples of communications adapters useful for
inter-thread data communications in a computer processor
according to embodiments of the present invention include
modems for wired dial-up communications, Ethernet (IEEE
802.3) adapters for wired data communications, and 802.11
adapters for wireless data communications.

The arrangement of computers and other devices making
up the exemplary system illustrated in FIG. 1 are for expla-
nation, not for limitation. Data processing systems useful
according to various embodiments of the present invention
may include additional servers, routers, other devices, and
peer-to-peer architectures, not shown in FIG. 1, as will occur
to those of skill in the art. Networks in such data processing
systems may support many data communications protocols,
including for example TCP (Transmission Control Protocol),
1P (Internet Protocol), HTTP (HyperText Transfer Protocol),
WAP (Wireless Access Protocol), HDTP (Handheld Device
Transport Protocol), and others as will occur to those of skill
in the art. Various embodiments of the present invention may
be implemented on a variety of hardware platforms in addi-
tion to those illustrated in FIG. 1.

For further explanation, FIG. 2 sets forth a flow chart
illustrating an exemplary method for inter-thread data com-
munications in a computer processor according to embodi-
ments of the present invention. A computer processor for
which the method of FIG. 2 is carried out includes multiple
hardware threads of execution, with each hardware thread
operatively coupled for data communications through an
inter-thread communications controller (142).

The method of FIG. 2 includes registering (202), by the
inter-thread communications controller (142) responsive to
one or more RECEIVE opcodes (216), one or more receiving
threads (222) executing the RECEIVE opcodes (216). Reg-
istering (202) receiving threads (222) executing the
RECEIVE opcodes (216) may be carried out in various ways,

10

15

20

25

30

35

40

45

50

55

60

65

8

including, for example by storing a thread identifier in a data
structure, setting a flag associated with a hardware thread that
indicates the thread is registered as a receiving thread, and in
other ways as will occur to readers of skill in the art. Consider,
for example, a processor with 64 hardware threads. In such an
example, a 64 bit segment of memory may be designated to
operate as a set flags for registering receiving threads, where
each bit in the 64 bit.

The method of FIG. 2 also includes receiving (204), from a
SEND opcode (218) of a sending thread (220) by the inter-
thread communications controller (142), specifications of a
number (228) of derived messages to be sent to receiving
threads (222) and a base value (226). Receiving (204) speci-
fications of a number (228) of derived messages to be sent to
receiving threads (222) and a base value (226) may be carried
out by receiving an operand or parameter of the SEND
opcode specifying a register or other memory location stor-
ing, as the number (228) of derived messages to be sent, an
integer value and another operand or parameter of the SEND
opcode specifying a register or other memory location stor-
ing, as the base value (226), another integer value.

The method of FIG. 2 also includes generating (206), by
the inter-thread communications controller (142), the derived
messages (214). In the method of FIG. 2, generating (206) the
derived messages (214) includes incrementing (208) the base
value (226) once for each registered receiving thread (222) so
that each derived message (214) comprises a single integer as
a separate increment (232) of the base value (226). With a
base value beginning at zero, for example, the inter-thread
communications controller (142) may generate four derived
messages by incrementing from zero to one (a first derived
message), then incrementing from one to two (a second
derived message), incrementing from two to three (a third
derived message), and incrementing from three to four (a
fourth derived message).

The method of FIG. 2 also includes sending (210), by the
inter-thread communications controller (142) to each regis-
tered receiving thread (222), a derived message (214). Send-
ing (210) a derived message to a registered receiving thread
(222) may be carried out by storing a separate increment of
the base value in a register or other memory location specified
by an operand of the RECEIVE opcode executed by the
registered receiving thread. The inter-thread communications
controller may also set a flag in the registered receiving thread
that indicates storage of the derived message.

The method of FIG. 2 also includes returning (212), from
the inter-thread communications controller (142) to the send-
ing thread (220), an actual number (230) of derived messages
received by receiving threads (222). Returning (212) an
actual number (230) of derived messages received by receiv-
ing threads (222) may be carried out in various ways includ-
ing, for example, by maintaining a counter of derived mes-
sages sent and storing the value of the counter upon the last
derived message sent in a register or other memory location
specified by the SEND opcode; by calculating the difference
of the current base value (the final incremented value sent as
aderived message) and the originally provided base value and
storing the difference in a register or other memory location
specified as an operand or parameter of the SEND opcode;
and in other ways as will occur to readers of skill in the art.
The inter-thread communications controller (142) may also
set a flag in the sending thread indicating the return of the
actual number of messages sent.

For further explanation, FIG. 3 sets forth a flow chart
illustrating an exemplary method for inter-thread data com-
munications in a computer processor according to embodi-
ments of the present invention. The method of FIG. 3 is



US 8,893,153 B2

9

similar to the method of FIG. 2 in that the method of FIG. 3 is
carried out for a computer processor that includes multiple
hardware threads of execution, each of which is operatively
coupled for data communications through an inter-thread
communications controller. FIG. 3 is also similar to the
method of FIG. 2 in that the method of FIG. 3 includes:
registering (202) one or more receiving threads (222) execut-
ing the RECEIVE opcodes (216); receiving (204) specifica-
tions of a number (228) of derived messages to be sent to
receiving threads (222) and a base value (226); generating
(206) the derived messages (214); sending (210) a derived
message (214) to each registered receiving thread (222); and
returning (212) an actual number (230) of derived messages
received by receiving threads (222).

The method of FIG. 3 differs from the method of FIG. 2,
however, in that in the method of FIG. 3 the SEND opcode
(218) and each RECEIVE opcode specifies a channel as a
channel identifying value (306, 304). A channel identifying
value may be any value, an integer, a floating point number, a
character string, a virtual or physical hardware memory
address, and so on as will occur to readers of skill in the art. In
the method of FIG. 3, sending (210) the derived message
(214) to each registered receiving thread (222) is carried out
by sending (302) the derived messages only to receiving
threads whose RECEIVE opcodes specity the channel speci-
fied by the SEND opcode. That is, the inter-thread commu-
nications controller in accordance with the method of FIG. 3
is configured to administer data communications with chan-
nels—effectively virtualizing physical connections between
hardware threads. In this way, a multiple sending threads may
execute separate SEND opcodes at similar times, with difter-
ent channels. That is, inter-thread data communications in
accordance with the method of FIG. 3 in may be carried out in
a many-to-many relationship—many sending threads-to-
many receiving threads—rather than a one-to-many relation-
ship—one sending thread-to-many receiving threads.

For further explanation, FIG. 4 sets forth a flow chart
illustrating an exemplary method for inter-thread data com-
munications in a computer processor according to embodi-
ments of the present invention. The method of FIG. 4 is
similar to the method of FIG. 2 in that the method of FIG. 4is
carried out for a computer processor that includes multiple
hardware threads of execution, each of which is operatively
coupled for data communications through an inter-thread
communications controller. FIG. 4 is also similar to the
method of FIG. 2 in that the method of FIG. 4 includes:
registering (202) one or more receiving threads (222) execut-
ing the RECEIVE opcodes (216); receiving (204) specifica-
tions of a number (228) of derived messages to be sent to
receiving threads (222) and a base value (226); generating
(206) the derived messages (214); sending (210) a derived
message (214) to each registered receiving thread (222); and
returning (212) an actual number (230) of derived messages
received by receiving threads (222).

The method of FIG. 4 differs from the method of FIG. 2,
however, in that the SEND opcode (218) and the RECEIVE
opcodes (216) specify channels as virtual memory addresses
(404, 406) that map to a same hardware memory address for
all threads using the same channel. That is, a channel accord-
ing to method of FIG. 4, is representing by a hardware
memory address. A sending thread and a receiving thread
may have a matching channel by specifying in the SEND and
RECEIVE opcodes, the same hardware memory address. In
FIG. 4, however, the hardware memory addresses are speci-
fied by abstractions—virtual memory addresses. The SEND
opcode and RECEIVE opcode need not specify the same
virtual memory address to have a matching channel, however.

5

10

15

20

25

30

35

40

45

50

55

60

65

10

The SEND opcode’s virtual memory address may map to a
particular hardware address, while the RECEIVE opcode’s
virtual memory address (an address different than the SEND
opcode’s virtual memory address) also maps to the same
particular hardware address. In this way, the actual value
provided by the SEND and RECEIVE opcodes to identify a
channel may be different, while still specifying the same
channel.

Inthe method of FIG. 4, sending (210) the derived message
(214) is carried out by sending (402) the derived messages
only to receiving threads whose RECEIVE opcode specifies a
virtual memory address that maps to a hardware memory
address also mapped to the virtual memory address specified
by the SEND opcode. That is, in accordance with the method
of FIG. 4 the inter-thread communications controller sends a
derived message from a sending thread specifying a channel
as a virtual memory address that maps to a particular hard-
ware memory address only to receiving threads specifying a
channel as a virtual memory address that also maps to the
same particular hardware memory address, even if the value
of each of the virtual memory addresses is different.

For further explanation, FIG. 5 sets forth a flow chart
illustrating an exemplary method for inter-thread data com-
munications in a computer processor according to embodi-
ments of the present invention. The method of FIG. 5 is
similar to the method of FIG. 2 in that the method of FIG. 5 is
carried out for a computer processor that includes multiple
hardware threads of execution, each of which is operatively
coupled for data communications through an inter-thread
communications controller. FIG. 5 is also similar to the
method of FIG. 2 in that the method of FIG. 5§ includes:
registering (202) one or more receiving threads (222) execut-
ing the RECEIVE opcodes (216); receiving (204) specifica-
tions of a number (228) of derived messages to be sent to
receiving threads (222) and a base value (226); generating
(206) the derived messages (214); sending (210) a derived
message (214) to each registered receiving thread (222); and
returning (212) an actual number (230) of derived messages
received by receiving threads (222).

The method of FIG. 5 differs from the method of FIG. 2,
however, in that the inter-thread communications controller
(142) of FIG. 5 is also operatively coupled to one or more
memory management units (144) serving the hardware
threads and the SEND opcode (218) and the RECEIVE
opcodes (216) specify channels as virtual memory addresses
(506, 504) that map to a same hardware memory address for
all threads using the same channel.

Inthe method of FIG. 5, sending (210) the derived message
(214) is carried out by checking (502) the one or more
memory management units for access permissions and send-
ing (508) the derived messages only from a sending thread
having write permissions on the hardware memory address
and only to receiving threads having read permissions on the
hardware memory address of the channel. That is, the inter-
thread communications controller in the method of FIG. 5 is
configured to restrict data communications among threads in
dependence upon memory read and write access permissions
administered by the MMUSs. Such access permissions may be
specified in a translation lookaside buffer, a page table, and in
other ways as will occur to readers of skill in the art.

For further explanation, FIG. 6 sets forth a flow chart
illustrating an exemplary method for inter-thread data com-
munications in a computer processor according to embodi-
ments of the present invention. The method of FIG. 6 is
similar to the method of FIG. 2 in that the method of FIG. 6 is
carried out for a computer processor that includes multiple
hardware threads of execution, each of which is operatively



US 8,893,153 B2

11

coupled for data communications through an inter-thread
communications controller. FIG. 6 is also similar to the
method of FIG. 2 in that the method of FIG. 6 includes:
registering (202) one or more receiving threads (222) execut-
ing the RECEIVE opcodes (216); receiving (204) specifica-
tions of a number (228) of derived messages to be sent to
receiving threads (222) and a base value (226); generating
(206) the derived messages (214); sending (210) a derived
message (214) to each registered receiving thread (222); and
returning (212) an actual number (230) of derived messages
received by receiving threads (222).

The method of FIG. 6 differs from the method of FIG. 2,
however, in that in the method of FIG. 6, interrupts (604) are
routed through the inter-thread communications controller
(142) and returning (212) the actual number of derived mes-
sages (214) received by receiving threads (222) includes
returning (602) upon an occurrence of an interrupt (604), a
sum of the base value and the number of derived messages
sent to receiving threads prior to the interrupt.

In addition to returning the number of message sent, the
inter-thread communications controller may also return a
sum of the base value and the number of derived messages
sent prior to the interrupt. This sum, represents a new base
value—a base value which may be provided by the sending
thread to proceed with the sending. Consider, for example,
that the originally provided base value is 100, the sending
thread requests 1000 messages to be sent, and the inter-thread
communications controller is interrupted after sending 10
messages. In this example, the inter-thread communications
controller (142), in accordance with the method of FIG. 6,
may return both the number of message sent, 10 messages,
along with a sum of the base value and the number of message
sent 110. The value 110, may be used in a second SEND
opcode by the sending thread as a base value. By using the
sum as the base value for a second SEND opcode, the sending
thread may resume the first batch of derived messages to
receiving threads at exactly the point where the sending was
interrupted.

For further explanation, FIG. 7 sets forth a flow chart
illustrating an exemplary method for inter-thread data com-
munications in a computer processor according to embodi-
ments of the present invention. The method of FIG. 7 is
similar to the method of FIG. 2 in that the method of FIG. 7 is
carried out for a computer processor that includes multiple
hardware threads of execution, each of which is operatively
coupled for data communications through an inter-thread
communications controller. FIG. 7 is also similar to the
method of FIG. 2 in that the method of FIG. 7 includes:
registering (202) one or more receiving threads (222) execut-
ing the RECEIVE opcodes (216); receiving (204) specifica-
tions of a number (228) of derived messages to be sent to
receiving threads (222) and a base value (226); generating
(206) the derived messages (214); sending (210) a derived
message (214) to each registered receiving thread (222); and
returning (212) an actual number (230) of derived messages
received by receiving threads (222).

The method of FIG. 7 differs from the method of FIG. 2,
however, in that in the method of FIG. 7, interrupts (704) are
routed through the inter-thread communications controller
(142) and FIG. 7 includes advising (702), by the inter-thread
communications controller (142), each registered receiving
thread (222) that no message is available for the receiving
thread if no message is available for the receiving thread upon
occurrence of an interrupt (704). Advising may be carried out
in various ways including, storing a predetermined value in a
particular register, setting a flag, and in other ways as will
occur to readers of skill in the art. Registered receiving

10

15

20

25

30

35

40

45

50

55

60

65

12

threads in accordance with the method of FIG. 7 are effec-
tively de-registered upon an occurrence of an interrupt (704)
if no messages are available to send. In this way, receiving
threads can be repurposed to process other computer program
instructions rather than waiting for a message that is not
available during an interrupt. Alternatively, the receiving
thread may reissue a RECEIVE opcode and enter a state in
which the receiving thread waits for a message to be deliv-
ered.

For further explanation, FIG. 8 sets forth a flow chart
illustrating an exemplary method for inter-thread data com-
munications in a computer processor according to embodi-
ments of the present invention. The method of FIG. 8 is
similar to the method of FIG. 2 in that the method of FIG. 8 is
carried out for a computer processor that includes multiple
hardware threads of execution, each of which is operatively
coupled for data communications through an inter-thread
communications controller. FIG. 8 is also similar to the
method of FIG. 2 in that the method of FIG. 8 includes:
registering (202) one or more receiving threads (222) execut-
ing the RECEIVE opcodes (216); receiving (204) specifica-
tions of a number (228) of derived messages to be sent to
receiving threads (222) and a base value (226); generating
(206) the derived messages (214); sending (210) a derived
message (214) to each registered receiving thread (222); and
returning (212) an actual number (230) of derived messages
received by receiving threads (222).

The method of FIG. 8 differs from the method of FIG. 2,
however, in that the method of FIG. 8 includes advising (802),
by the inter-thread communications controller (142), each
registered receiving thread (222) that no message is available
for the receiving thread if no message is available for the
receiving thread through a predefined period of time (804)
after registration. In embodiments of the present invention, a
receiving thread once registered must wait for some amount
of time prior to receiving a derived message. If no message is
available—no sending thread issues a SEND opcode—the
method of FIG. 8 provides a means by which the registered
receiving thread may be repurposed, rather than waiting for
extending periods of time.

For further explanation, FIG. 9 sets forth a flow chart
illustrating an exemplary method for inter-thread data com-
munications in a computer processor according to embodi-
ments of the present invention. The method of FIG. 9 is
similar to the method of FIG. 2 in that the method of FIG. 9 is
carried out for a computer processor that includes multiple
hardware threads of execution, each of which is operatively
coupled for data communications through an inter-thread
communications controller. FIG. 9 is also similar to the
method of FIG. 2 in that the method of FIG. 9 includes:
registering (202) one or more receiving threads (222) execut-
ing the RECEIVE opcodes (216); receiving (204) specifica-
tions of a number (228) of derived messages to be sent to
receiving threads (222) and a base value (226); generating
(206) the derived messages (214); sending (210) a derived
message (214) to each registered receiving thread (222); and
returning (212) an actual number (230) of derived messages
received by receiving threads (222).

The method of FIG. 9 differs from the method of FIG. 2,
however, in that in the method of FIG. 9 returning (212) the
actual number (230) of derived messages (214) received by
receiving threads also includes returning (902) the base value
plus the number of derived messages sent to receiving threads
if a sum of the base value and the actual number of derived
message sent is equal to the number (228) of derived message
to be sent as specified by the SEND opcode (218), where the
derived message to be sent is specified by the SEND opcode



US 8,893,153 B2

13

as a maximum increment of the base value. As mentioned
above, in some embodiments, the SEND opcode specifies a
number of messages to be sent as a maximum increment of
the base value rather than an absolute number of messages to
be sent. Consider, for example, a base value of 5 and a limit of
10. In this example, when the limit specifies a number of
messages to be sent as a maximum increment of the base
value, the number of messages to be sent is 5, not 10. In the
method of FIG. 9, the inter-thread communications controller
(142) compares the sum of the base value and the number of
derived messages actually sent to the maximum increment of
the base value (the number of derived messages to be sent)
specified in the SEND opcode to determine whether the send-
ing is complete—that is, whether the inter-thread communi-
cations controller has sent all requested messages.

Returning (212) the actual number (230) of derived mes-
sages (214) in the example of Figure also includes returning
(906) upon expiration of a predetermined period of time (904)
after receiving the specifications of the number of derived
messages to be sent and the base value, the sum of the base
value and the number of derived messages sent to receiving
threads, if the sum of the base value and the number of derived
messages sent is less than the number of derived messages to
be sent as specified by the SEND opcode. The method of FIG.
9 enables a sending thread to be repurposed after a predefined
period of time if sending is incomplete, and upon expiration
of' that predefined period of time if sending is incomplete, the
inter-thread communications controller returns a value to be
used as a base value in a future SEND opcode to effectively
resume where the previous SEND opcode stopped. Consider,
for example, a sending thread that provides a base value of
100 and a maximum increment of the base value of 1100—a
request of 1000 messages to be sent. After 100 messages, the
predefined period of time expires and the inter-thread com-
munications controller in accordance with embodiments of
the present invention returns the sum of the actual number
messages sent and the base value—200. In this example, the
sending thread may issue a subsequent SEND opcode with a
base value of 200 and the same maximum increment 1100,
effectively resuming where the previous SEND opcode
stopped. Alternatively, the sending thread may execute other
instructions. In this way, sending threads are not caught in a
wait state, executing no instructions for a time longer than the
predefined period of time.

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in one
or more computer readable medium(s) having computer read-
able program code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable transmission medium or a computer
readable storage medium. A computer readable storage
medium may be, for example, but not limited to, an elec-
tronic, magnetic, optical, electromagnetic, infrared, or semi-
conductor system, apparatus, or device, or any suitable com-
bination of the foregoing. More specific examples (a non-
exhaustive list) of the computer readable storage medium
would include the following: an electrical connection having
one or more wires, a portable computer diskette, a hard disk,

15

40

45

14

a random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), an optical fiber, a portable com-
pact disc read-only memory (CD-ROM), an optical storage
device, a magnetic storage device, or any suitable combina-
tion of the foregoing. In the context of this document, a
computer readable storage medium may be any tangible
medium that can contain, or store a program for use by or in
connection with an instruction execution system, apparatus,
or device.

A computer readable transmission medium may include a
propagated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable transmission medium may be any computer
readable medium that is not a computer readable storage
medium and that can communicate, propagate, or transport a
program for use by or in connection with an instruction
execution system, apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any com-
bination of one or more programming languages, including
an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro-
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

Aspects of the present invention are described above with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-



US 8,893,153 B2

15

ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, in some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams
and/or flowchart illustration, can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard-
ware and computer instructions.

It will be understood from the foregoing description that
modifications and changes may be made in various embodi-
ments of the present invention without departing from its true
spirit. The descriptions in this specification are for purposes
of illustration only and are not to be construed in a limiting
sense. The scope of the present invention is limited only by
the language of the following claims.

What is claimed is:

1. A method comprising:

registering a first set of one or more hardware threads for

receiving messages sent from hardware threads;

after receiving indications of a message location value and

a number, incrementing the message location value and
sending the incremented message location value to a
different hardware thread of the first set of one or more
hardware threads until the message location value has
been incremented the number of times or a criterion for
interrupting the incrementing and sending is satisfied;
and

indicating, to a hardware thread that sent the indications of

the message location value and the number, an actual
number of times the message location value was incre-
mented.

2. The method of claim 1, wherein said registering a first set
of one or more hardware threads for receiving messages sent
from hardware threads comprises at least one of storing a
thread identifier in a data structure and setting a flag associ-
ated with each hardware thread of the first set of one or more
hardware threads.

3. The method of claim 1, wherein the criterion for inter-
rupting the incrementing and sending comprises at least one
of: each hardware thread of the first set of one or more hard-
ware threads has received an incremented message location
value; expiration of a predefined time period; and the message
location value is equal to the number.

4. The method of claim 1, wherein said registering a first set
of one or more hardware threads for receiving messages sent
from hardware threads comprises indicating a first channel
value associated with the first set of one or more hardware
threads.

20

25

35

40

45

50

55

16

5. The method of claim 4 further comprising:

receiving an indication of the first channel value with the
indications of the message location value and the num-
ber, wherein the first channel value is associated with the
hardware thread that sent the indications of the message
location value and the number; and

determining that the different hardware thread of the first
set of one or more hardware threads is associated with
the first channel value;

wherein said sending the incremented message location
value to a different hardware thread of the first set of one
or more hardware threads is in response to said deter-
mining that the different hardware thread of the first set
of one or more hardware threads is associated with the
first channel value.

6. The method of claim 5, wherein the first channel value
comprises one or more virtual memory addresses that resolve
to the same hardware memory address.

7. The method of claim 6, further comprising:

determining that the different hardware thread of the first
set of one or more hardware threads has permission to
read from the hardware memory address; and

determining that the hardware thread that sent the indica-
tions of the message location value and the number has
permission to write to the hardware memory address;

wherein said sending the incremented message location
value to a different hardware thread of the first set of one
or more hardware threads is in response to said deter-
mining that the different hardware thread of the first set
of one or more hardware threads has permission to read
from the hardware memory address and said determin-
ing that the hardware thread that sent the indications of
the message location value and the number has permis-
sion to write to the hardware memory address.

8. The method of claim 1, further comprising receiving an
indication of an interrupt, wherein said indicating an actual
number of times the message location value was incremented
is in response to said receiving the indication of the interrupt.

9. The method of claim 1, further comprising:

receiving at least one of an indication of an interrupt and an
indication that a predetermined period of time has
passed;

inresponse to said receiving at least one of the indication of
the interrupt and the indication that the predetermined
period of time has passed, determining that a first hard-
ware thread of the first set of one or more hardware
threads has not received an incremented message loca-
tion value; and

in response to said determining that the first hardware
thread has not received an incremented message location
value, indicating to the first hardware thread that the first
hardware thread has not received an incremented mes-
sage location value.

10. The method of claim 1, wherein the message location
value comprises one of a memory location, a register, a value
of'a variable, and an array index.

11. The method of claim 1, wherein the indication of the
message location value is an indication of one of a register and
a memory location, wherein the message location value is
stored in one of the register and the memory location.

12. A computer program product comprising:

a non-transitory computer readable storage medium hav-
ing computer usable program code embodied therewith,
the computer usable program code comprising a com-
puter usable program code configured to,
register a first set of one or more hardware threads for

receiving messages sent from hardware threads;



US 8,893,153 B2

17

after receiving indications of a message location value
and a number, increment the message location value
and send the incremented message location value to a
different hardware thread of the first set of one or
more hardware threads until the message location
value has been incremented the number of times or a
criterion for interrupting the incrementing and send-
ing is satisfied; and

indicate, to a hardware thread that sent the indications of
the message location value and the number, an actual
number of times the message location value was
incremented.

13. The computer program product of claim 12, wherein
the criterion for interrupting the incrementing and sending
comprises at least one of: each hardware thread of the first set
of one or more hardware threads has received an incremented
message location value; expiration of a predefined time
period; and the message location value is equal to the number.

14. The computer program product of claim 12, wherein
said computer usable program code configured to register a
first set of one or more hardware threads for receiving mes-
sages sent from hardware threads comprises computer usable
program code configured to at least one of storing a thread
identifier in a data structure and setting a flag associated with
each hardware thread of the first set of one or more hardware
threads.

15. The computer program product of claim 12, wherein
the message location value comprises one of a memory loca-
tion, a register, a value of a variable, and an array index.

16. An apparatus comprising:

one or more processors, each of which is configured to

support a plurality of hardware threads; and
acommunications controller coupled with the one or more
processors;

wherein each hardware thread is configured to,

indicate, to the communications controller, a hardware
thread identifier when the hardware thread is available
to receive a message from another of the plurality of
hardware threads;

indicate, to the communications controller, a message
location value when the hardware thread has mes-
sages to send to other ones of the plurality ot hardware
threads;

wherein the communications controller is configured to,

store a hardware thread identifier indicated by a hard-
ware thread;
for each stored hardware thread identifier or until a
completion criterion has been met,
increment a message location value indicated by a
hardware thread of the plurality of hardware
threads, and
send the incremented message location value to a
hardware thread of the plurality of hardware
threads corresponding to the hardware thread iden-
tifier; and
indicate, to a hardware thread of the plurality of hard-
ware threads that indicated a message location value,
a count of incremented message location values sent
to the plurality of hardware threads.

17. The apparatus of claim 16, wherein the completion
criterion comprises at least one of expiration of a time period
and the count of incremented message location values sent to
the plurality of hardware threads is equal to a number indi-
cated by a hardware thread of the plurality of hardware
threads.

18

18. The apparatus of claim 16,
wherein each hardware thread is configured to further indi-
cate, to the communications controller, at least one of a
channel value associated with the respective hardware
5 thread and a channel value associated with the message
location value,
wherein the communications controller being configured
to send the incremented message location value to a
hardware thread of the plurality of hardware threads
corresponding to the hardware thread identifier com-
prises the communications controller being configured
to:
determine that the hardware thread of the plurality of
hardware threads corresponding to the hardware
thread identifier indicated the same channel value as is
associated with the message location value; and
send the incremented message location value to the
hardware thread of the plurality of hardware threads
corresponding to the hardware thread identifier in
response to a determination that the hardware thread
of' the plurality of hardware threads corresponding to
the hardware thread identifier indicated the same
channel value as is associated with the message loca-
tion value.

19. The apparatus of claim 16, wherein the communica-
tions controller is further configured to:

receive at least one of an indication of an interrupt and an

indication that a predetermined period of time has
passed;

inresponse to reception of at least one of an indication of an

interrupt and an indication that a predetermined period
oftime has passed, determine that a first hardware thread
of the plurality of hardware threads has not been sent an
incremented message location value; and

in response to a determination that the first hardware thread

has not received an incremented message location value,
indicating to the first hardware thread that the first hard-
ware thread has not been sent an incremented message
location value.

20. The apparatus of claim 16, wherein the communica-
tions controller being configured to send the incremented
message location value to a hardware thread of the plurality of
hardware threads corresponding to the hardware thread iden-
tifier comprises the communications controller being config-
ured to:

determine that the hardware thread of the plurality of hard-

ware threads that indicated the message location value
has permission to write to a message location indicated
by the incremented message location value;

determine that the hardware thread of the plurality of hard-

ware threads corresponding to the hardware thread iden-
tifier has permission to read from the message location
indicated by the incremented message location value;
and

send the incremented message location value to the hard-

ware thread of the plurality of hardware threads corre-
sponding to the hardware thread identifier in response to
a determination that the hardware thread of the plurality
of hardware threads that indicated the message location
value has permission to write to the message location
indicated by the incremented message location value
and a determination that the hardware thread of the
plurality of hardware threads corresponding to the hard-
ware thread identifier has permission to read from the
message location indicated by the incremented message
location value.

25

35

40

45



