US008572628B2

a2 United States Patent 10) Patent No.: US 8,572,628 B2
Bohrer et al. 45) Date of Patent: Oct. 29, 2013
(54) INTER-THREAD DATA COMMUNICATIONS 7,861,249 B2* 12/2010 Jiangetal. 719/313
IN A COMPUTER PROCESSOR 8,230,423 B2 7/2012 Frigo et al.
8,245,081 B2 8/2012 Colbert et al.
. . . 2002/0199179 Al 12/2002 Lavery et al.
(75) Inventors: Patrick J. B(.)hrer, Cf:dar Park, TX (US); 5003/0014473 Al 1/2003 Ohsawa et al.
Ahmed Gheith, Austin, TX (US); James 2004/0268093 Al* 12/2004 Samraetal. 712/217
L. Peterson, Austin, TX (US) .
(Continued)
(73) Assignee: IC“J:;‘;:;‘:;Z‘EIE‘;:O“;ES%;ES‘S%“ FOREIGN PATENT DOCUMENTS
)) o) WO 2006074027 7/2006
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 OTHER PUBLICATIONS
U.S.C. 154(b) by 391 days.)
Intel, “Hyper-Threading Technology”, Intel Technology Journal, vol.
(21) Appl. No.: 12/958,980 06, Issue 01 (Feb. 14, 2002), pp. 1-66 [retrieved from www.intel.com/
technology/itj/2002/volume06issue01/vol6iss1__hyper_ threading
(22) Filed: Dec. 2,2010 technology.pdf].*
(65) Prior Publication Data (Continued)
US 2012/0144395 A1 Jun. 7, 2012 Primary Examiner — Andy Ho
51 nt. C1 Assistant Examiner — Brian W Wathen
GD G“0'6F /54 (2006.01) (74) Attorney, Agent, or Firm — DeLizio Gilliam, PLLC
(52) US.CL (57) ABSTRACT
USPC e 719/313;712/225 o)
(58) Field of Classification Search Inter-thread data communications in a computer processor
CPC . GO6F 9/30043: GO6F 9/3004: GO6F 9/4812: with multiple hardware threads of execution, each hardware
’ GO6F 9/3009’. GOGF 9 /385f thread operatively coupled for communications through an
USPC oo 712/225,220;719/313 inter-thread communications controller, where inter-thread
See application file for complete searcli histé)ry. communications is carried out by the inter-thread communi-
cations controller and includes: registering, responsive to one
(56) References Cited or more RECEIVE opcodes, one or more receiving threads

U.S. PATENT DOCUMENTS

executing the RECEIVE opcodes; receiving, from a SEND
opcode of a sending thread, specifications of a number of
derived messages to be sent to receiving threads and a base

g’gfé’giz Eé ;;3883 éil"s‘:\f;;nef;?l' value; generating the derived messages, incrementing the
7395409 B> 7/2008 Dowling ‘ base value once for each registered receiving thread so that
7:395:52 1 Bl 7/2008 Ma et al. each derived message includes a single integer as a separate
7,418,585 B2 8/2008 Kissell increment of the base value; sending, to each registered
7424599 B2 9/2008 Kissell et al. receiving thread, a derived message; and returning, to the
;’2%’3‘;2 E% lggggg ilil?;ls%l?t al. sending thread, an actual number of derived messages
7.676.664 B2 3/2010 Kissell received by receiving threads.
7,725,697 B2 5/2010 Kissell
7,765,547 B2 7/2010 Cismas et al. 24 Claims, 9 Drawing Sheets

el st 22 ‘Sending Thread 220

i) Vi

[rerThvead

{Comms
[Controller
142

Regiter Receiving Thveacs 202
Regsiered Reoging
Threads 222

[Reosive Spaciications Of A Number Of Derlved Messages|
To Be Sent To Receiving Threads And A Base Vaiue 204

[Base Value 226

Numbsr Of Mgs,
To Ba Sent 28

[Generate, By The Inter-thread Commenications Contmoler,
L 208

he Drivad Messages

Increment The Bese Velue Once For Each Regisiered
Receiving Thread So That Each Derlved Message s A
Singla Integer As A Saparata Increment Of The Base

Send, To Each Registered Recemng Thread, A Derived
Message 210

Retum, To The Sending Thread, An Actusl Number Of
Messages Recaived By Recaiving Threads 212

Reoaiving Trreads 222
Deed |7 Valie 22 /
Messeges™_ly

a4

Sening Thead 220

No. Misgs. Sent
24

US 8,572,628 B2
Page 2

(56)

2007/0106988
2007/0106990
2007/0283357
2009/0216993
2009/0257450
2009/0300651
2010/0005277
2011/0197090

References Cited

U.S. PATENT DOCUMENTS

Al 5/2007
Al 5/2007
Al 12/2007
Al* 82009
Al 10/2009
Al* 12/2009
Al* 1/2010
Al 8/2011

Kissell

Kissell

Jeter et al.

Venkumahanti et al. 711/206
Sirigiri et al.

Jiang et al.ccccoeeene 719/313
Gibertetal. 712/220
Colbert et al.

2012/0144396 Al 6/2012 Bobhrer et al.
2012/0216204 Al 8/2012 Bohrer et al.

OTHER PUBLICATIONS
Victor Reyes, A Multicast Inter-Task Communication Protocol for
Embedded Multiprocessor Systems, Proceedings of the 3rd IEEE/
ACM/IFIP international conference on Hardware/software codesign
and system synthesis, 2005, ACM.
“U.S. Appl. No. 12/959,075”, filed Dec. 7, 2012, 15 pages.

* cited by examiner

U.S. Patent Oct. 29, 2013 Sheet 1 of 9 US 8,572,628 B2

| |

Expansion Bus 160

User Input
Comm. 10 Devices 181 Drive
Adapter Adapter
167 172

i Processor 156 Computer 152 i
L} L}
i| | Regs. 128 | | Regs. 130 | | Regs. 132 | | Regs. 134 '
L} L}
' Send RECV RECV RECV '
| Opcode Opcode Opcode Opcode '
i 102 114 114 114 RAM 168 i
})
i | || No. Msgs. Channel Channel Channel User-level '
i1 | To Be Sent 148 148 148 Application '
E 104 Derived Derived Derived 146 i
! Base Msg. 108 Msg. 110 Msg. 112 oot :
| | Value 106 || IM1a 100 Jf I nt 222 | {[nt 113 peraing l
|| f=—== System I
! Channel 154 !
{| =" N oo) |
! ’;0- 'tv'sﬁz HW Thread| [HW Thread| [HW Thread 00 | |
) 122 124 126 =2 |
| I_ i
: :
1| |HW Thread Inter-Thread Communications Bus| |
d 120 Controller 142 MMU Adapter !
i 144 158| 1
' Front Side Bus —
! Decode Dispatch Execution 162 :
| 136 138 Units 140 :
| |
) 1
) 1
) [}
) [}
) [}
) L}
) L}
) |
) L}
) [}
) [}
) [}
) [}

Data Comms. Network 100

FIG. 1

U.S. Patent Oct. 29, 2013 Sheet 2 of 9 US 8,572,628 B2

Receiving Threads 222

Sending Thread 220

RECV Opcodes SEND Opcode
216 218
Inter-Thread ¢
Comms.
Controller Register Receiving Threads 202
142) J
Base Value 226
Vsl Number Of Msgs
= To Be Sent 228

Receive Specifications Of A Number Of Derived Messages
To Be Sent To Receiving Threads And A Base Value 204 |g—

v

Generate, By The Inter-thread Communications Controller,
The Derived Messages 206

Increment The Base Value Once For Each Registered
Receiving Thread So That Each Derived Message Is A
Single Integer As A Separate Increment Of The Base
Value 208

Y

Send, To Each Registered Receiving Thread, A Derived
Message 210

!

Return, To The Sending Thread, An Actual Number Of
Messages Received By Receiving Threads 212

Receiving Threads 222

Sending Thread 220

Inc’'s Of Base
Derived / / No. Msgs. Sent /
Messages . 230
214

FIG. 2

U.S. Patent

Oct. 29, 2013

Receiving Threads 222 |

Sheet 3 of 9

>/

Channel Identifying

/

US 8,572,628 B2

Sending Thread 220

RECV Opcodes SEND Opcode
216 // Value 304 / 218
Inter-Thread
Comms. Y y
Controller Register Receiving Threads 202 Base Value 226
142 Number Of Msgs.
To Be Sent 228
Registered Receiving / .
Channel Identifying
/ Threads 222 Value 306
Receive Specifications Of A Number Of Derived Messages
To Be Sent To Receiving Threads And A Base Value 204 ||
Generate, By The Inter-thread Communications Controller, The Derived Messages 206
Increment The Base Value Once For Each Registered Receiving Thread So That Each
Derived Message Is A Single Integer As A Separate Increment Of The Base Value 208
Send A Derived Message 210
Send The Derived Messages Only To Receiving
Threads Whose RECEIVE Opcodes Specify The
Channel Specified By The SEND Opcode 302
Return, To The Sending Thread, An Actual Number Of
Messages Received By Receiving Threads 212
Recelw,ng Threads 222 Sending Thread 220
Inc’s Of Base
Derived Value 232 /) / No. Msgs. Sent /
Messages : 20
214

FIG. 3

U.S. Patent Oct. 29, 2013 Sheet 4 of 9 US 8,572,628 B2

Sending Thread 220

Virtual Memory Address
END
7/ 104 / / S 21ngc:ode

Receiving Threads 222 '|-

RECV Opcodes
216

Inter-Thread v
Comms. Register Receiving Threads 202 B VI'226
Controller egister Receiving Threads 202 ase Value 226
142 Number Of Msgs.
To Be Sent 228
[g ||y
— Addr. 406

Receive Specifications Of A Number Of Derived Messages
To Be Sent To Receiving Threads And A Base Value 204 |gq—

v

Generate, By The Inter-thread Communications Controller, The Derived Messages 206

Increment The Base Value Once For Each Registered Receiving Thread So That Each
Derived Message Is A Single Integer As A Separate Increment Of The Base Value 208

v

Send A Derived Message 210

— RECEIVE Opcode Specifies A Virtual Memory Address That
i Maps To A Hardware Memory Address Also Mapped To The
i Virtual Memory Address Specified By The SEND Opcode 402 |

L]

Return, To The Sending Thread, An Actual Number Of
Messages Received By Receiving Threads 212

Receiving Threads 222

Inc’s Of Base
Value 232 //

Sending Thread 220

No. Msgs. Sent
230

Derived

FIG. 4

U.S. Patent Oct. 29, 2013 Sheet 5 of 9 US 8,572,628 B2

Receiving Threads 222 [} Sending Thread 220

RECV Opcodes 7/ Virtual Memory Addr957 SEND Opcode
216 / S04 218

Inter-Thread Y Vi 226
Comms. Register Receiving Threads 202 ase Vale .20
Controller Number Of Msgs.
142 + To Be Sent 228
/ Regl_sr:]er;e:ds g(;;lvmg / Virtual Memory
— Addr. 506

Receive Specifications Of A Number Of Derived Messages
To Be Sent To Receiving Threads And A Base Value 204

v

Generate, By The Inter-thread Communications Controller, The Derived Messages 206

Increment The Base Value Once For Each Registered Receiving Thread So That Each
Derived Message Is A Single Integer As A Separate Increment Of The Base Value 208

!

Send A Derived Message 210

Check The Memory Management Units For Access Permissions 502

Send The Derived Messages Only From A Sending Thread Having
Write Permissions On The Hardware Memory Address And Only To
Receiving Threads Having Read Permissions On The Hardware
Memory Address Of The Channel 508

'

Return, To The Sending Thread, An Actual Number Of

Messages Received By Receiving Threads 212 v
MMU e
Receiving Threads 222 144

Sending Thread 220

No. Msgs. Sent
230

Derived
Messages
214

Inc’'s Of Base
Value 232 /Y

FIG. 5

U.S. Patent Oct. 29, 2013 Sheet 6 of 9 US 8,572,628 B2
Receiving Threads 222 'I-I Sending Thread 220
RECV Opcodes SEND Opcode
216 218
Inter-Thread ¥
Comms.
Controller Register Receiving Threads 202
142 Y
Base Value 226
[e /| pumvsrottisgs.
* — To Be Sent 228
Receive Specifications Of A Number Of Derived Messages
To Be Sent To Receiving Threads And A Base Value 204 [g— |
Generate, By The Inter-thread Communications Controller, The Derived Messages 206
Increment The Base Value Once For Each Registered Receiving Thread So That Each
Derived Message Is A Single Integer As A Separate Increment Of The Base Value 208
Send, To Each Registered Receiving Thread, A Derived
Message 210
Interru'pt 604
y
Return, To The Sending Thread, An Actual Number Of
Messages Received By Receiving Threads 212
{ Retumn Upon An Occurrence Of An Interrupt, The Base
! Value Plus The Number Of Derived Messages Sent To
Receiving Threads Prior To The Interrupt 602
Recelw,ng Threads 222 Sending Thread 220
In¢’s Of Base
Derived Value 232 /// / No. Msgs. Sent /4
Messages X 230
214

FIG. 6

U.S. Patent

Oct. 29, 2013

Receiving Threads 222

I

Sheet 7 of 9

US 8,572,628 B2

Sending Thread 220

RECV Qpcodes
216 / SEND Opcode
218
Y Inter-Thread]
Register Receiving Threads 202 Comms.
Advise Each Controller]
i Receiving Thread 142
{ ThatNo Messagels {
P Available For The | Memuet
H s M '
: Receiving Thread If : Registered Receiving
i NoMessagels | = Threads 222 Base Value 226
Available For The — Number Of Msgs.
¢ Receiving Thread To Be Sent 228
i Upon Occurrence Of —
i An Interrupt 702
Y

Receive Specifications Of A Number Of Derived Messages
To Be Sent To Receiving Threads And A Base Value 204

v

Generate, By The Inter-thread Communications Controller, The Derived Messages 206

Increment The Base Value Once For Each Registered Receiving Thread So That Each
Derived Message Is A Single Integer As A Separate Increment Of The Base Value 208

v

Send, To Each Registered Receiving Thread, A Derived Message 210

v

Return, To The Sending Thread, An Actual Number Of

Messages Received By Receiving Threads 212

Derived
Messages
214

Receiving Threads 222

Inc’s Of Base
Value 232 //

Sending Thread 220

/ No. Msgs. Sent

230

FIG. 7

U.S. Patent

Oct.

Receiving Threads 222

I

29,2013 Sheet 8 of 9

US 8,572,628 B2

Sending Thread 220

v

RECV Opcodes
216 I / SENDZ?Spcode /
Inter-Thread}
Register Receiving Threads 202 Comms.
Advise Each Controller
i Receiving Thread 142
i ThatNo Message Is i<-----x
i Available For The Timeout
: Receiving Thread If 804 y
NO, Message Is _ Registered Receiving Base Value 226

Available For The T Threads 222 Number Of Msgs.
i Receiving Thread To Be Sent 228
i Through A Predefined | e
i Period Of Time After No Timeout

Registration 802 706

Receive Specifications Of A Number Of Derived Messages
To Be Sent To Receiving Threads And A Base Value 204

Y

Generate, By The Inter-thread Communications Controller, The Derived Messages 206

Increment The Base Value Once For Each Registered Receiving Thread So That Each
Derived Message Is A Single Integer As A Separate Increment Of The Base Value 208

v

Send, To Each Registered Receiving Thread, A Derived Message 210

v

Return, To The Sending Thread, An Actual Number Of

Messages Received By Receiving Threads 212

Derived

Receiving Threads 222

Inc's Of Base
Value 232 ///

Sending Thread 220

230

/ No. Msgs. Sent

FIG. 8

U.S. Patent Oct. 29, 2013 Sheet 9 of 9 US 8,572,628 B2

Receiving Threads 222
Sending Thread 220

ECV Opcodes
216 SEND Opcode
218

Inter-Thread

Comms. Register Receiving Threads 202 Y

Controller Base Value 226

142 Registered Receiving Number Of Msgs.
Threads 222 To Be Sent 228

Receive Specifications Of A Number Of Derived Messages
To Be Sent To Receiving Threads And A Base Value 204

y

Generate, By The Inter-thread Communications Controller, The Derived Messages 206

Increment The Base Value Once For Each Registered Receiving Thread So That Each
Derived Message Is A Single Integer As A Separate Increment Of The Base Value 208

Y

Send, To Each Registered Receiving Thread, A Derived Message 210

_________ Y

" Return The Base Value Plus The Number Of Derived Messages Sent If A Sum Of The -
i Base Value And The Number Of Derived Message Sent Is Equal To The Number Of
Derived Message To Be Sent Opcode 902 :

Timeout 904

o)
@
[
-5
3
c
S
O
3
m
>
.
@
=
=2
Q
==
>
:‘Ul
D
a
@
<D
S
3.4
=
<D
O
e
® !
S
Q
O
Q
==
=
3!
D
=
<D
S
poF
<D
(%)
@
<
3!
« .
_|
=
<
w
™
=
o

Opcode, The Base Value Plus The Number Of Derived Messages Sent, If A Sum Of The
i Base Value And The Number Of Derived Messages Sent Is Less Than The Number Of
: Derived Messages To Be Sent 906

Return An Actual Number Of Messages Received By Receiving Threads 212

Receiving Threads 222

Inc’'s Of Base
Value 232 ///

Sending Thread 220

| No. Msgs. Sent
230

Derived

FIG. 9

US 8,572,628 B2

1
INTER-THREAD DATA COMMUNICATIONS
IN A COMPUTER PROCESSOR

BACKGROUND OF THE INVENTION

1. Field of the Invention

The field of the invention is data processing, or, more
specifically, methods, apparatus, and products for inter-
thread data communications in a computer processor.

2. Description of Related Art

Computers are becoming more and more sophisticated and
powerful. Computer software increasingly requires greater
processing power from computer hardware and complexity of
computer hardware increases accordingly. Current computer
processors, for example, include a great number of hardware
threads within which a great number of software threads may
be executed. Presently, communication between such hard-
ware threads is burdensome, time consuming, resource con-
suming, and inefficient.

SUMMARY OF THE INVENTION

Method, apparatus, and products for inter-thread data com-
munications in a computer processor with multiple hardware
threads of execution are disclosed. Each hardware thread is
operatively coupled for data communications through an
inter-thread communications controller. The inter-thread
communications controller carries out inter-thread data com-
munications in accordance with embodiments of the present
invention by registering, by the inter-thread communications
controller responsive to one or more RECEIVE opcodes, one
or more receiving threads executing the RECEIVE opcodes;
receiving, from a SEND opcode of a sending thread by the
inter-thread communications controller, specifications of a
number of derived messages to be sent to receiving threads
and a base value; generating, by the inter-thread communica-
tions controller, the derived messages, incrementing the base
value once for each registered receiving thread so that each
derived message comprises a single integer as a separate
increment of the base value; sending, by the inter-thread
communications controller to each registered receiving
thread, a derived message; and returning, from the inter-
thread communications controller to the sending thread, an
actual number of derived messages received by receiving
threads.

The foregoing and other objects, features and advantages
of the invention will be apparent from the following more
particular descriptions of exemplary embodiments of the
invention as illustrated in the accompanying drawings
wherein like reference numbers generally represent like parts
of exemplary embodiments of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 sets forth a network diagram of a system for inter-
thread data communications in a computer processor accord-
ing to embodiments of the present invention.

FIG. 2 sets forth a flow chart illustrating an exemplary
method for inter-thread data communications in a computer
processor according to embodiments of the present invention.

FIG. 3 sets forth a flow chart illustrating an exemplary
method for inter-thread data communications in a computer
processor according to embodiments of the present invention.

FIG. 4 sets forth a flow chart illustrating an exemplary
method for inter-thread data communications in a computer
processor according to embodiments of the present invention.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 5 sets forth a flow chart illustrating an exemplary
method for inter-thread data communications in a computer
processor according to embodiments of the present invention.

FIG. 6 sets forth a flow chart illustrating an exemplary
method for inter-thread data communications in a computer
processor according to embodiments of the present invention.

FIG. 7 sets forth a flow chart illustrating an exemplary
method for inter-thread data communications in a computer
processor according to embodiments of the present invention.

FIG. 8 sets forth a flow chart illustrating an exemplary
method for inter-thread data communications in a computer
processor according to embodiments of the present invention.

FIG. 9 sets forth a flow chart illustrating an exemplary
method for inter-thread data communications in a computer
processor according to embodiments of the present invention.

DETAILED DESCRIPTION OF EXEMPLARY
EMBODIMENTS

Exemplary methods, apparatus, and products for inter-
thread data communications in a computer processor in
accordance with the present invention are described with
reference to the accompanying drawings, beginning with
FIG. 1. FIG. 1 sets forth a network diagram of a system for
inter-thread data communications in a computer processor
according to embodiments of the present invention. The sys-
tem of FIG. 1 includes automated computing machinery com-
prising an example computer (152). The computer (152) of
FIG. 1 includes at least one computer processor (156) or
‘CPU” as well as random access memory (168) (‘RAM”)
which is connected through a high speed memory bus (166)
and bus adapter (158) to processor (156) and to other com-
ponents of the computer (152).

The example processor (156) of the computer (152) in the
system of FIG. 1 includes multiple hardware threads (120,
122, 124, and 126) of execution. Hardware threads provide
physical means by which computer program instructions of
software threads are executed. A software thread is the small-
est unit of processing that can be scheduled by an operating
system for execution on a processor. A software thread is
typically contained inside a process. Multiple software
threads can exist within the same process and share resources
such as memory, while different processes do not share these
resources. In particular, the software threads of a process
share the process’s instructions and context—values vari-
ables have at any given moment in execution. A ‘hardware’
thread, by contrast, is implemented in hardware of a computer
processor and executes instructions of software threads. That
is, support for a hardware thread is built into the processor
itself in the form of a separate architectural register set for
each hardware thread, so that each hardware thread can
execute simultaneously with no need for context switches
among the hardware threads. Each such hardware thread can
run multiple software threads of execution implemented with
the software threads assigned to portions of processor time
called ‘quanta’ or “time slots” and context switches that save
the contents of a set of architectural registers for a software
thread during periods when that software thread loses posses-
sion of'its assigned hardware thread. In the example of FIG. 1,
each of the hardware threads (120, 122, 124, and 126) has a
corresponding set of registers (128, 130, 132, and 134).

In the example of FIG. 1, computer program instructions
may be executed within a hardware thread (120,122, 124, and
126) through use of an instruction decoder (136), an instruc-
tion dispatcher (138), and execution units (140). An instruc-
tion decoder (136) is a network of static and dynamic logic
within the processor (156) that retrieves instructions from

US 8,572,628 B2

3

registers in the register sets (128, 130, 132, and 134) and
decodes the instructions into microinstructions for execution
on execution units (140) within the processor. An instruction
to be decoded for execution, for example may include an
opcode (operation code). An opcode is the portion of a
machine language instruction that specifies the operation to
be performed. Apart from the opcode itself, an instruction
may also have one or more parameters, also called operands,
on which the operation should act, although some operations
may have implicit operands or none at all. Depending on the
architecture of the processor upon which the opcode is
decoded and executed, the operands may be register values,
values in a call stack, other memory values, I/O ports, and the
like. Once decoded, execution units (140) execute the micro-
instructions. Examples of execution units include LOAD
execution units, STORE execution units, floating point
execution units, execution units for integer arithmetic and
logical operations, and so on. The computer processor (156)
in the example of FIG. 1 also includes an instruction dis-
patcher (138) that arbitrates, in the presence of resource con-
tention, priorities for dispatch of instructions from the hard-
ware threads (120, 122, 124, and 126) of execution. The
instruction dispatcher (138) is a network of static and
dynamic logic within the processor (156) that dispatches
microinstructions to the execution units (140) in the processor
(156).

Each hardware thread (120, 122, 124, and 126) in the
example of FIG. 1 is operatively coupled for data communi-
cations through an inter-thread communications controller
(142). In the system of FIG. 1, the example inter-thread com-
munications controller (142) is a network of static and
dynamic logic within the processor (156) configured for
inter-thread data communications in accordance with
embodiments of the present invention. The inter-thread data
communications controller (142) in the example of FIG. 1
administers inter-thread data communications in the com-
puter processor (156) in accordance with embodiments of the
present invention by, among other actions, registering,
responsive to one or more RECEIVE opcodes (114), one or
more receiving threads (122, 124, and 126). A receiving
thread, as the term is used in this specification, refers to a
hardware thread that executes a RECEIVE opcode (114). An
example RECEIVE opcode (114) may be implemented as
follows: recv. rt, where the operand ‘rt’ specifies a register in
which the inter-thread data communications controller (142)
is to store a message sent from a sending thread to the receiv-
ing thread executing the example RECEIVE opcode.

In some embodiments, such as those set forth in the
example of FIG. 1, each RECEIVE opcode (114) also speci-
fies a channel (148). A channel as the term is used in this
specification is refers to an effective, or virtualized data com-
munications coupling, for purposes of inter-thread data com-
munications, between sending threads and receiving threads.
Such a coupling need be a direct physical coupling, but is
instead, an abstraction of a physical coupling; a virtualized
data communications channel between a transmitter (sending
thread) and receiving (receiving thread). In the example of
FIG. 1, and as described below in greater detail, the inter-
thread communications controller (142) is configured to
effectively virtualize physical communication connections
between a sending and receiving thread through the use of
such channels. A channel may be specified as a value—an
integer, memory address, or other channel identifying value.
In some embodiments a channel may be specified virtual
memory addresses that map to a same hardware memory
address for all threads using the same channel. In embodi-
ments in which sending and receiving threads specify chan-

10

15

20

25

30

35

40

45

50

55

60

65

4

nels, the inter-thread communications controller (142) is con-
figured to allow communications between a sending and
receiving thread that specify the same channel—as if the two
threads were directly physically coupled. Conversely, when a
sending thread and receiving thread specify different chan-
nels, the inter-thread communications controller (142) is con-
figured to prohibit communications between the two threads.
Described here is but one example use among many possible
uses of channels in inter-thread data communications accord-
ing to embodiments of the present invention. Further
examples are described below.

A hardware thread that executes a SEND opcode (102) is
referred to in this specification as a ‘sending’ thread. In inter-
thread data communications according to embodiments of the
present invention, the example inter-thread communications
controller (142) also receives, from a SEND opcode (102) of
a sending thread (120), specifications of a number (104) of
derived messages (108, 110, and 112) to be sent to receiving
threads and a base value (106). In embodiments in which the
inter-thread communications controller (142) is configured to
administer communications in accordance with channels,
such as the embodiments set forth in the example of FIG. 1,
the SEND opcode (102) may further specify a channel (148).

Data communications messages transmitted among hard-
ware threads in accordance with embodiments of the present
invention are described in this specification as ‘derived’ mes-
sages in that the content of such messages is derived from the
base value provided by the sending thread. Such derivation of
messages is described in greater detail below. The number
(104) of derived message to be sent may be a value stored in
a register (128) of the sending thread (120) or other memory
location and the specification of the SEND opcode (102) of
the number (104) of derived messages to be sent may be
implemented as an operand or parameter of the SEND opcode
identifying the register (128) or memory location storing the
value. For a number of reasons, some of which are described
below, the inter-thread communications controller (142) may
send only a portion of the specified number of derived mes-
sages to be sent. A sending thread, for example, may request
1000 messages to be sent, but the inter-thread communica-
tions controller (142) may only send 100 of those 1000
requested messages.

The base value (106) may be an integer value, such as zero
or some memory address, stored in a register or other memory
location, where the specification of the base value (106) in the
SEND opcode may be implemented as an operand or param-
eter of the opcode identifying the register or memory location
storing the base value. Consider, as an example of a SEND
opcode configured for inter-thread communications carried
out according to embodiments of the present invention, the
following opcode: send. base, limit, chan. In this example
opcode the operand ‘base’ specifies a register storing, as the
base value (106), an integer value, the operand ‘limit’ speci-
fies a register storing, as the number (104) of derived mes-
sages to be sent, another integer value, and the operand ‘chan’
specifies a register storing, as a channel, a channel identifying
value, such as a memory address.

As explained below in detail the inter-thread communica-
tions controller increments the base value once for each
derived message sent to a registered receiving thread. As
such, in some embodiments, the ‘limit’ specifies the number
of messages to be sent as a maximum increment of the base
value rather than an absolute number of messages to be sent.
Consider, for example, a base value of 5 and a limit of 10. In
this example, when the limit specifies a number of messages
to be sent as a maximum increment of the base value, the
number of messages to be sent is 5, not 10.

US 8,572,628 B2

5

In inter-thread data communications according to embodi-
ments of the present invention the example inter-thread com-
munications controller (142) of FIG. 1 also generates the
derived messages. The inter-thread communications control-
ler (142) generates the derived messages by incrementing the
base value (106) once for each registered receiving thread so
that each derived message (108, 110, and 112) comprises a
single integer (109, 111, and 113) as a separate increment of
the base value (106). Consider, for example a SEND opcode
specifying four derived messages to be sent and a base value
of zero. In such an example, the inter-thread communications
controller (152) may increment the base value to an integer of
one for a first derived message, increment the value again to
an integer of two for a second derived message, increment the
value again to an integer of three for a third derived message,
and increment the value again to an integer of four for a fourth
derived message. Each derived message is a separate and
distinct integer from other derived messages.

From the perspective of the inter-thread communications
controller each generated derived message comprising an
integer value. That is, the message is the integer itself. From
the perspective of the receiving hardware thread, however, the
integer received responsive to a SEND opcode may be used as
a pointer to a memory location storing data to be processed,
may be a value of a variable, may be an array index, and so on
as will occur to readers of skill in the art. The registered
receiving threads, for example, may use the derived mes-
sage—the integer value received from the inter-thread com-
munications controller (142)—to retrieve other data. In this
way, a sending thread may transfer a relatively large amount
of'data to a receiving thread by sending only an integer value,
a relatively small amount of data, to the receiving thread.

In inter-thread data communications according to embodi-
ments of the present invention the example inter-thread com-
munications controller (142) of FIG. 1 also sends, to each
registered receiving thread, a derived message. That is, once
the inter-thread communications controller (142) generates
one or more derived messages, the inter-thread communica-
tions controller (142) sends the derived messages to regis-
tered threads. Sending the derived messages may be carried
out by storing the messages in a register of each thread—a
register specified as an operand of the RECEIVE opcode—
and setting a flag associated with the receiving thread, desig-
nated for such purpose. An example of flag may be, for
example, one or more bits in the receiving thread’s condition
code register.

In embodiments in which the sending thread (120) and
receiving threads (122, 124, and 126) specify a channel (148),
the inter-thread data communications may be configured to
send the derived messages (108, 110, and 112) only to receiv-
ing threads whose RECEIVE opcodes specify the channel
specified by the SEND opcode. In embodiments in which
channels are specified by virtual memory addresses that map
to a same hardware memory address for all threads using the
same channel the inter-thread data communications control-
ler (142) may be configured to send the derived messages
(108, 110, and 112) only to receiving threads whose
RECEIVE opcodes specity the virtual memory address speci-
fied by the SEND opcode.

In some embodiments, such as those set forth in the
example of FIG. 1, the inter-thread communications control-
ler (142) may be operatively coupled to one or more memory
management units (144) serving the hardware threads (120,
122, 124, and 126). A memory management unit is a com-
puter hardware component responsible for handling accesses
to memory requested by a CPU. The memory management
unit’s functions include translation of virtual addresses to

20

25

30

40

45

6

physical addresses (i.e., virtual memory management),
memory protection through access permissions, cache con-
trol, bus arbitration, and, in some computer architectures,
bank switching. In embodiments in which channels are speci-
fied by virtual memory addresses that map to a same hardware
memory address for all threads using the same channel the
inter-thread data communications controller (142) may be
further configured to check the memory management units
(144) for access permissions and send the derived messages
(108,110, and 112) only from a sending thread (120) having
write permissions on the hardware memory address and only
to receiving threads (122, 124, and 126) having read permis-
sions on the hardware memory address of the channel. In this
way—through memory read and write access permissions in
the MMU (144)—user-level processes may effectively set
communications restrictions among hardware threads (120,
122, 124, and 126).

In inter-thread communications according to embodiments
of the present invention the example inter-thread communi-
cations controller (142) of FIG. 1 also returns, to the sending
thread (120), an actual number (116) of derived messages
received by receiving threads. As explained above, in some
instances the inter-thread communications controller (142)
does not send the requested number of derived messages to
receiving threads. In the example of FIG. 1, the inter-thread
communications controller (142), then, is configured to
report the number of derived messages actually sent. In this
way, the sending thread may determine whether to reissue the
SEND opcode. In the example SEND opcode above, an oper-
and specifies a register ‘rt” in which to store the actual number
of message sent by the inter-thread communications control-
ler (142). In this example, the inter-thread communications
controller (142) may return the actual number of derived
messages sent by maintaining a counter of the number of
derived messages sent and storing the value of the counter
upon the last derived message sent in the ‘rt’ register and
setting a flag indicating message send completion. The flag
may, for example, be one or more bits of the sending thread’s
(120) condition code register set.

Stored in RAM (168) of the computer (152) is an example
user-level application (146), a module of computer program
instructions for user-level data processing tasks. Examples of
user-level applications (146) include word processing appli-
cations, spreadsheet applications, database management
applications, multi-media library applications, multi-media
editing applications, and so on as will occur to readers of skill
in the art. A process for the user-level application (146) is
instantiated and maintained in the operating system (154)
with one or more software threads of execution. The operat-
ing system (154) administers execution of the user-level
application (146), by scheduling the software threads for
execution on the computer processor (156), within the hard-
ware threads (120, 122, 124, and 126). Operating systems
useful inter-thread data communications in a computer pro-
cessor according to embodiments of the present invention
include UNIX™, Linux™, Microsoft XP™, AIX™, [BM’s
15/0S™ and others as will occur to those of skill in the art.
The operating system (154) and user-level application (146)
in the example of FIG. 1 are shown in RAM (168), but many
components of such software typically are stored in non-
volatile memory also, such as, for example, on a disk drive
(170).

The computer (152) of FIG. 1 includes disk drive adapter
(172) coupled through expansion bus (160) and bus adapter
(158) to processor (156) and other components of the com-
puter (152). Disk drive adapter (172) connects non-volatile
data storage to the computer (152) in the form of disk drive

US 8,572,628 B2

7

(170). Disk drive adapters useful in computers for inter-
thread data communications in a computer processor accord-
ing to embodiments of the present invention include Inte-
grated Drive Electronics (‘IDE’) adapters, Small Computer
System Interface (SCSI”) adapters, and others as will occur to
those of skill in the art. Non-volatile computer memory also
may be implemented for as an optical disk drive, electrically
erasable programmable read-only memory (so-called
‘EEPROM’ or ‘Flash’ memory), RAM drives, and so on, as
will occur to those of skill in the art.

The example computer (152) of FIG. 1 includes one or
more input/output (‘1/0”) adapters (178). 1/O adapters imple-
ment user-oriented input/output through, for example, soft-
ware drivers and computer hardware for controlling output to
display devices such as computer display screens, as well as
user input from user input devices (181) such as keyboards
and mice. The example computer (152) of FIG. 1 includes a
video adapter (209), which is an example of an 1/O adapter
specially designed for graphic output to a display device
(180) such as a display screen or computer monitor. Video
adapter (209) is connected to processor (156) through a high
speed video bus (164), bus adapter (158), and the front side
bus (162), which is also a high speed bus.

The exemplary computer (152) of FIG. 1 includes a com-
munications adapter (167) for data communications with
other computers (182) and for data communications with a
data communications network (100). Such data communica-
tions may be carried out serially through RS-232 connections,
through external buses such as a Universal Serial Bus
(‘USB’), through data communications networks such as IP
data communications networks, and in other ways as will
occur to those of skill in the art. Communications adapters
implement the hardware level of data communications
through which one computer sends data communications to
another computer, directly or through a data communications
network. Examples of communications adapters useful for
inter-thread data communications in a computer processor
according to embodiments of the present invention include
modems for wired dial-up communications, Ethernet (IEEE
802.3) adapters for wired data communications, and 802.11
adapters for wireless data communications.

The arrangement of computers and other devices making
up the exemplary system illustrated in FIG. 1 are for expla-
nation, not for limitation. Data processing systems useful
according to various embodiments of the present invention
may include additional servers, routers, other devices, and
peer-to-peer architectures, not shown in FIG. 1, as will occur
to those of skill in the art. Networks in such data processing
systems may support many data communications protocols,
including for example TCP (Transmission Control Protocol),
1P (Internet Protocol), HTTP (HyperText Transfer Protocol),
WAP (Wireless Access Protocol), HDTP (Handheld Device
Transport Protocol), and others as will occur to those of skill
in the art. Various embodiments of the present invention may
be implemented on a variety of hardware platforms in addi-
tion to those illustrated in FIG. 1.

For further explanation, FIG. 2 sets forth a flow chart
illustrating an exemplary method for inter-thread data com-
munications in a computer processor according to embodi-
ments of the present invention. A computer processor for
which the method of FIG. 2 is carried out includes multiple
hardware threads of execution, with each hardware thread
operatively coupled for data communications through an
inter-thread communications controller (142).

The method of FIG. 2 includes registering (202), by the
inter-thread communications controller (142) responsive to
one or more RECEIVE opcodes (216), one or more receiving

10

15

20

25

30

35

40

45

50

55

60

65

8

threads (222) executing the RECEIVE opcodes (216). Reg-
istering (202) receiving threads (222) executing the
RECEIVE opcodes (216) may be carried out in various ways,
including, for example by storing a thread identifier in a data
structure, setting a flag associated with a hardware thread that
indicates the thread is registered as a receiving thread, and in
other ways as will occur to readers of skill in the art. Consider,
for example, a processor with 64 hardware threads. In such an
example, a 64 bit segment of memory may be designated to
operate as a set flags for registering receiving threads, where
each bit in the 64 bit segment is associated with one and only
one of the processor’s 64 hardware threads.

The method of FIG. 2 also includes receiving (204), from a
SEND opcode (218) of a sending thread (220) by the inter-
thread communications controller (142), specifications of a
number (228) of derived messages to be sent to receiving
threads (222) and a base value (226). Receiving (204) speci-
fications of a number (228) of derived messages to be sent to
receiving threads (222) and a base value (226) may be carried
out by receiving an operand or parameter of the SEND
opcode specifying a register or other memory location stor-
ing, as the number (228) of derived messages to be sent, an
integer value and another operand or parameter of the SEND
opcode specifying a register or other memory location stor-
ing, as the base value (226), another integer value.

The method of FIG. 2 also includes generating (206), by
the inter-thread communications controller (142), the derived
messages (214). In the method of FIG. 2, generating (206) the
derived messages (214) includes incrementing (208) the base
value (226) once for each registered receiving thread (222) so
that each derived message (214) comprises a single integer as
a separate increment (232) of the base value (226). With a
base value beginning at zero, for example, the inter-thread
communications controller (142) may generate four derived
messages by incrementing from zero to one (a first derived
message), then incrementing from one to two (a second
derived message), incrementing from two to three (a third
derived message), and incrementing from three to four (a
fourth derived message).

The method of FIG. 2 also includes sending (210), by the
inter-thread communications controller (142) to each regis-
tered receiving thread (222), a derived message (214). Send-
ing (210) a derived message to a registered receiving thread
(222) may be carried out by storing a separate increment of
the base value in a register or other memory location specified
by an operand of the RECEIVE opcode executed by the
registered receiving thread. The inter-thread communications
controller may also set a flag in the registered receiving thread
that indicates storage of the derived message.

The method of FIG. 2 also includes returning (212), from
the inter-thread communications controller (142) to the send-
ing thread (220), an actual number (230) of derived messages
received by receiving threads (222). Returning (212) an
actual number (230) of derived messages received by receiv-
ing threads (222) may be carried out in various ways includ-
ing, for example, by maintaining a counter of derived mes-
sages sent and storing the value of the counter upon the last
derived message sent in a register or other memory location
specified by the SEND opcode; by calculating the difference
of the current base value (the final incremented value sent as
aderived message) and the originally provided base value and
storing the difference in a register or other memory location
specified as an operand or parameter of the SEND opcode;
and in other ways as will occur to readers of skill in the art.
The inter-thread communications controller (142) may also
set a flag in the sending thread indicating the return of the
actual number of messages sent.

US 8,572,628 B2

9

For further explanation, FIG. 3 sets forth a flow chart
illustrating an exemplary method for inter-thread data com-
munications in a computer processor according to embodi-
ments of the present invention. The method of FIG. 3 is
similar to the method of FIG. 2 in that the method of FIG. 3 is
carried out for a computer processor that includes multiple
hardware threads of execution, each of which is operatively
coupled for data communications through an inter-thread
communications controller. FIG. 3 is also similar to the
method of FIG. 2 in that the method of FIG. 3 includes:
registering (202) one or more receiving threads (222) execut-
ing the RECEIVE opcodes (216); receiving (204) specifica-
tions of a number (228) of derived messages to be sent to
receiving threads (222) and a base value (226); generating
(206) the derived messages (214); sending (210) a derived
message (214) to each registered receiving thread (222); and
returning (212) an actual number (230) of derived messages
received by receiving threads (222).

The method of FIG. 3 differs from the method of FIG. 2,
however, in that in the method of FIG. 3 the SEND opcode
(218) and each RECEIVE opcode specifies a channel as a
channel identifying value (306, 304). A channel identifying
value may be any value, an integer, a floating point number, a
character string, a virtual or physical hardware memory
address, and so on as will occur to readers of skill in the art. In
the method of FIG. 3, sending (210) the derived message
(214) to each registered receiving thread (222) is carried out
by sending (302) the derived messages only to receiving
threads whose RECEIVE opcodes specity the channel speci-
fied by the SEND opcode. That is, the inter-thread commu-
nications controller in accordance with the method of FIG. 3
is configured to administer data communications with chan-
nels—effectively virtualizing physical connections between
hardware threads. In this way, a multiple sending threads may
execute separate SEND opcodes at similar times, with difter-
ent channels. That is, inter-thread data communications in
accordance with the method of FIG. 3 in may be carried out in
a many-to-many relationship—many sending threads-to-
many receiving threads—rather than a one-to-many relation-
ship—one sending thread-to-many receiving threads.

For further explanation, FIG. 4 sets forth a flow chart
illustrating an exemplary method for inter-thread data com-
munications in a computer processor according to embodi-
ments of the present invention. The method of FIG. 4 is
similar to the method of FIG. 2 in that the method of FIG. 4is
carried out for a computer processor that includes multiple
hardware threads of execution, each of which is operatively
coupled for data communications through an inter-thread
communications controller. FIG. 4 is also similar to the
method of FIG. 2 in that the method of FIG. 4 includes:
registering (202) one or more receiving threads (222) execut-
ing the RECEIVE opcodes (216); receiving (204) specifica-
tions of a number (228) of derived messages to be sent to
receiving threads (222) and a base value (226); generating
(206) the derived messages (214); sending (210) a derived
message (214) to each registered receiving thread (222); and
returning (212) an actual number (230) of derived messages
received by receiving threads (222).

The method of FIG. 4 differs from the method of FIG. 2,
however, in that the SEND opcode (218) and the RECEIVE
opcodes (216) specify channels as virtual memory addresses
(404, 406) that map to a same hardware memory address for
all threads using the same channel. That is, a channel accord-
ing to method of FIG. 4, is representing by a hardware
memory address. A sending thread and a receiving thread
may have a matching channel by specifying in the SEND and
RECEIVE opcodes, the same hardware memory address. In

10

15

20

25

30

35

40

45

50

55

60

65

10

FIG. 4, however, the hardware memory addresses are speci-
fied by abstractions—virtual memory addresses. The SEND
opcode and RECEIVE opcode need not specify the same
virtual memory address to have a matching channel, however.
The SEND opcode’s virtual memory address may map to a
particular hardware address, while the RECEIVE opcode’s
virtual memory address (an address different than the SEND
opcode’s virtual memory address) also maps to the same
particular hardware address. In this way, the actual value
provided by the SEND and RECEIVE opcodes to identify a
channel may be different, while still specifying the same
channel.

Inthe method of FIG. 4, sending (210) the derived message
(214) is carried out by sending (402) the derived messages
only to receiving threads whose RECEIVE opcode specifies a
virtual memory address that maps to a hardware memory
address also mapped to the virtual memory address specified
by the SEND opcode. That is, in accordance with the method
of FIG. 4 the inter-thread communications controller sends a
derived message from a sending thread specifying a channel
as a virtual memory address that maps to a particular hard-
ware memory address only to receiving threads specifying a
channel as a virtual memory address that also maps to the
same particular hardware memory address, even if the value
of each of the virtual memory addresses is different.

For further explanation, FIG. 5 sets forth a flow chart
illustrating an exemplary method for inter-thread data com-
munications in a computer processor according to embodi-
ments of the present invention. The method of FIG. 5 is
similar to the method of FIG. 2 in that the method of FIG. 5 is
carried out for a computer processor that includes multiple
hardware threads of execution, each of which is operatively
coupled for data communications through an inter-thread
communications controller. FIG. 5 is also similar to the
method of FIG. 2 in that the method of FIG. 5§ includes:
registering (202) one or more receiving threads (222) execut-
ing the RECEIVE opcodes (216); receiving (204) specifica-
tions of a number (228) of derived messages to be sent to
receiving threads (222) and a base value (226); generating
(206) the derived messages (214); sending (210) a derived
message (214) to each registered receiving thread (222); and
returning (212) an actual number (230) of derived messages
received by receiving threads (222).

The method of FIG. 5 differs from the method of FIG. 2,
however, in that the inter-thread communications controller
(142) of FIG. 5 is also operatively coupled to one or more
memory management units (144) serving the hardware
threads and the SEND opcode (218) and the RECEIVE
opcodes (216) specify channels as virtual memory addresses
(506, 504) that map to a same hardware memory address for
all threads using the same channel.

Inthe method of FIG. 5, sending (210) the derived message
(214) is carried out by checking (502) the one or more
memory management units for access permissions and send-
ing (508) the derived messages only from a sending thread
having write permissions on the hardware memory address
and only to receiving threads having read permissions on the
hardware memory address of the channel. That is, the inter-
thread communications controller in the method of FIG. 5 is
configured to restrict data communications among threads in
dependence upon memory read and write access permissions
administered by the MMUSs. Such access permissions may be
specified in a translation lookaside buffer, a page table, and in
other ways as will occur to readers of skill in the art.

For further explanation, FIG. 6 sets forth a flow chart
illustrating an exemplary method for inter-thread data com-
munications in a computer processor according to embodi-

