US008561070B2

a2 United States Patent 10) Patent No.: US 8,561,070 B2
Bohrer et al. 45) Date of Patent: Oct. 15,2013
(54) CREATING A THREAD OF EXECUTION IN A 7.424,599 B2* 9/2008 Kissell et al. ocococccrn 712/228
7,594,236 B2 9/2009 Jiang et al.
COMPUTER PROCESSOR WITHIOUT TS . ey et
7,676,664 B2* 3/2010 Kissell 712/244
. 7,725,697 B2* 5/2010 Kissell 712/244
(75) Inventors: Patrick J. Bohrer, Cedar Park, TX (US); 7,765,547 B2* 7/2010 Cismas et al. ... 718/100
Ahmed Gheith, Austin, TX (US); James 8,028,152 B2* 9/2011 Glew 7127220
L. Peterson, Austin, TX (US) 8,230,423 B2* 7/2012 Frigoetal. 718/102
’ ’ 8,245,081 B2* 82012 Colbertetal. 714/38.1
. 2002/0199179 Al* 12/2002 Laveryetal. T17/158
(73) Assignee: Internatl({nal Business Machines 5003/0014473 Al* 1/2003 Ohsawa et al. . 209/107
Corporation, Armonk, NY (US) 2007/0106988 AL* 52007 Kissell - 718/102
2007/0106990 Al* 5/2007 Kissell 718/102
(*) Notice: Subject to any disclaimer, the term of this 2007/0283357 Al1* 12/2007 Jeteretal. 718/102
patent is extended or adjusted under 35 2011/0197090 Al1* 82011 Colbertetal. 714/2
U.S.C. 154(b) by 309 days.
FOREIGN PATENT DOCUMENTS
(21) Appl. No.: 12/959,075 WO WO 2006/074027 A2 7/2006
(22) Filed: Dec. 2,2010 * cited by examiner
(65) Prior Publication Data Primary Examiner — Van Nguyen
US 2012/0144396 A1 Jun. 7. 2012 (74) Attorney, Agent, or Firm — DeLizio Gilliam, PLLC
(51) Int.CL 57 ABSTRACT
GOG6F 9/16 (2006.01) Creating a thread of execution in a computer processor
(52) US.CL includes an apparatus for copying data from a first set of
USPC oo 718/100; 718/102 registers to a second set of registers. The first set of registers
(58) Field of Classification Search is associated with a parent hardware thread and the second set
USPC oo 718/100, 102 of registers is associated with a child hardware thread. The
See application file for complete search history. copying is indicated by a hardware processor opcode called
by a user-level process. The copying is performed with no
(56) References Cited operating system involvement. The child hardware thread is

U.S. PATENT DOCUMENTS

6,848,097 Bl
7,243,345 B2 *

1/2005
7/2007

Alverson et al.

Ohsawa et al. 717/149

7,395,409 B2* 7/2008 Dowling 712/34
7,398,521 B2* 7/2008 Hoflehner et al. . 717/151
7,418,585 B2* 8/2008 Kissellcccooviiiinine 712/244

Opcode 102

Y

in a wait state. Creating the thread also includes changing, as
indicated by the hardware processor opcode, the child hard-
ware thread from the wait state to an ephemeral run state. The
ephemeral run state indicates a lack of operating system sup-
port structures for the child hardware thread.

14 Claims, 7 Drawing Sheets

Copy, By A Hardware Processor Opcode , With No
0S Involvement, Register Contents From A Parent
Herdware Thread To A Child Hardware Thread 302

Y

Change, By The Hardware Processor Opcode, The
Child Hardware Thread From The Wait State To An
Ephemeral Run State 304

Y
Exectite 704 { Opcode 702 ;

Y

Return, By A Hardware Processor Opcode Executed
In The Child Hardware Thread, The Child Hardware
Thread To The Wait State 704

Parent HYW | Register
Thread Contents Rur;osztaie
120 320 o
Child HW | Register p
[-—FThread Contents Wagoitate
122 20 =
1
'
A 4
Child HW | Register {| Ephemeral
—»fThread Contents {| Run State
122 320 26
)
1
)
1
1
|
1
'
)
1
I
1
'
1
'
)
|
Yy
Child HW | Register {f ,, .
—fThread Contents Nag[imte
122 320 o

U.S. Patent Oct. 15,2013 Sheet 1 of 7 US 8,561,070 B2

e m e m = = = = = = = ———— = ———

]

E Processor 156 T

' Regs. 124 Regs. 126 _8 -

E fork opcode 102 l St 112 User-leve1l :gpphcat;on

; Max. No. of Child —

! Threads 104 Thread ID 114 Overating Svst

. o perating System

1] 1| Indication Of Threads — 154

' Created 106 Indication That : ®
' Thread Is A Process Descriptor !
: Number Of Threads Child 116 140 :
i Created 108 !
’ .

i1 | |Indication That Thread lnstr1u1célons Thread Descriptors i
' Is A Parent 110 — 142 !
; T Video |1
' Adapter |1
H

! Memory 209 i
: Parent HW Child HW Bus i
' Thread 120 Thread 122 166 :
H

§ 1
; Bus Adapter | |
| - Front Side Bus 162 158 i
1 | Decode Dispatch Exec. Units ey -]
| 132 134 136 l
' 1
' 1
! Expansion Bus 160 '
' [}
\ 1
) I I User Input E
: Comm. 110 Devices 181 Drive !
E Adapter Adapter |
' 167 '
I [}
i]

Data Comms. Netwark 100

FIG. 1

U.S. Patent Oct. 15,2013 Sheet 2 of 7 US 8,561,070 B2

Thread State Machine
200

Interrupt 208

Canonical Run
202

wait opcode 210

System Call,
Interrupt, Or
Exception

216

Ephemeral Run
206

FIG. 2

U.S. Patent Oct. 15,2013 Sheet 3 of 7 US 8,561,070 B2

S
1 User- Level Process Parent HW| Register
1 316) Run State
——————— T------* Thread Contents 202 - -
Call 318 120 320 ==
/ Opcode 102 / Operand 322 /
Copy, By A Hardware Pracessor Opcode, With No 08 Child HW | Register Wait State
Involvement, Register Contents From A Parent Thread Contents 204
Hardware Thread To A Child Hardware Thread 302 122 320 =
v i
Change, By The Hardware Processor Opcode, The '
Child Hardware Thread From The Wait State To An '
Ephemeral Run State 304 4
Set, By The Hardware Processor Opcode For The Register || Ephemeral
Child Hardware Thread, A Flag Identifying The fchiid Hw | Contents {} Run State
Child Hardware Thread As A Child 306 L »IThread 320 206
Y 122 Child Flag | [Thread ID
Assign, By The Hardware Processor Opcode, A 116 114

Unique Thread Identifier To The Child Hardware
Thread Including Storing An Integer In A Register

Of The Child Hardware Thread 308
I

Y

Set, By The Hardware Processor Opcode For The
Parent Hardware Thread, A Flag Indicating Whether

Any Child Hardware Threads Were Changed From ¢
The Wait State To The Ephemeral Run State 310
¢ Register Threads
Contents Created
Return, By The Hardware Processor Opcode To The 320 Flag 106
h fParent HW
User-level Process, A Number Of Child Hardware | ptrnead [ParentFiao 1l Run State | b
Threads Changed From The Wait State To The 120 F 110 9 ur; 0
Ephemeral Run State 312 - — e
Number Of Child Threads
I 100
Set, By The Hardware Processor Opcode For The T
Parent Hardware Thread, A Flag Identifying The FIG. 3

Parent Hardware Thread As A Parent 314

U.S. Patent Oct. 15,2013 Sheet 4 of 7 US 8,561,070 B2

_______ To--=---
Call 318 i
210 Parent HW| Register Run State
Thread Contents 20
/. Opcode 102 120 320 =
¥
Copy, By A Hardware Processor Opcode, With No OS Child HW | Register Wait State
Involvernent, Register Contenis From A Parent Thread Contents 204
Hardware Thread To A Child Hardware Thread 302 122 320 =
Y '
Change, By The Hardware Processor Opcode, The Child HW | Register || Ephemeral
Child Hardware Thread From The Wait State To An Thread Contents {| Run State | }~
Ephemeral Run State 304 122 320 208 '
t
‘ :
:
Call, By The Child Hardware Thread, An Operating ;
System Function 402 :
:
H
;
Operatmg System Another Thread !
Function Call 406 Desoriptor M :
i
H
H
;
Create, By The Operating System A Canonical !
Operating System Thread Descriptor For The Child [«——— !
Hardware Thread 404 '
3
t
1
H
1
H
1
H
;
Child Thread Child HW | Register !
/ Descriptor 410 / Thread | Contents Rugosztate <
122 320 =

FIG. 4

U.S. Patent Oct. 15,2013 Sheet 5 of 7 US 8,561,070 B2

: 316 | |
_______ Fo-----t ,
Call 318 Parent HW| Register Run State
v Thread Contents 202
120 320 -
/ Opcode 102 /
v | ¥
Copy, By A Hardware Processor Opcode , With No Child HW | Register Wait State
0S Involvement, Register Contents From A Parent —fThread Contents 204
Hardware Thread To A Child Hardware Thread 302 122 320 =
v Y
Change, By The Hardware Processor Opcode, The IChild HW | Register |} Ephemeral
Child Hardware Thread From The Wait State To An —§Thread Contents Run State | f~
Ephemeral Run State 304 122 320 206 |
i
Y i
Receiving, By The Computer Processor, An '
Asynchronous Interrupt Of The Child Hardware :
Thread Thereby Invoking An Interrupt Handler Of The '
Operating System 502 :
|
|
Interrupt L4 !
Handler / Interrupt 506 / Another Thread |
912 l Descriptor 508 !
v :
1
|
Create, By The Operating System, A Canonical !
Operating System Thread Descriptor For The Child |« !
Hardware Thread 504 !
i
{
i
i
|
|
|
Child Thread Child HW Register Run State :
/ Descriptor 510 / Thread Contents 202 -
122 320 ”““

FIG. 5

!

Causing, By The Child Hardware Thread, An
Execution Exception Thereby hvoking An Interrupt
Handler Of The Operating System 602

interrupt + -
Handler / Exception /

Create, By The Operating System, A Canonical
Operating System Thread Descriptor For The Child
Hardware Thread 604

Child Thread
Descriptor 610

U.S. Patent Oct. 15,2013 Sheet 6 of 7 US 8,561,070 B2
1 User- Level Pracess
! 316 |
....... Fem--m=-
Call 318 Parent HW| Register
Run State
Thread Conients 202
/ Opcode 102 120 320 £L
¥
Copy, By A Hardware Processor Opcode , With No Child HW | Register Wait State
0S8 Involvement, Register Contents From A Parent Thread Contents 204
Hardware Thread To A Child Hardware Thread 302 122 320 =
v y
Change, By The Hardware Processor Opcode, The Child HW | Register {| Ephemeral
Child Hardware Thread From The Wait State To An Thread Contents |} Run State | -
Ephemeral Run State 304 122 320 206

Another Thread
Descriptor 608

/

B
Child HW | Register
Thread | Contents R“';Osztate <
122 320 =

FIG. 6

U.S. Patent Oct. 15,2013 Sheet 7 of 7 US 8,561,070 B2

}
User- Level Process Parent HW

: Register
H]
r______§+_6_______g Thread Contents Rur;osztate
Call 318 120 320 =
\
/ Opcode 102 /
l ¥
Copy, By A Hardware Processor Opcode , With No Child HW Register Wail State
0S Involvement, Register Contents From A Parent Thread Contents 204
Hardware Thread To A Child Hardware Thread 302 122 320 =
:
1
y
Change, By The Hardware Processor Opcode, The Child HW | Register }} Ephemeral
Child Hardware Thread From The Wait State To An Thread Contents Run State
Ephemeral Run State 304 122 320 206
:
1
1
]
1
y |
Execute 704 Opcode 702 !
/ poce fe / !
:
)
1
1
1
[]
L 4
Return, By A Hardware Processor Opcode Executed Child HW | Register Wait State
In The Child Hardware Thread, The Child Hardware Thread Contents 204
Thread To The Wait State 704 122 320 =

FIG. 7

US 8,561,070 B2

1
CREATING A THREAD OF EXECUTION IN A
COMPUTER PROCESSOR WITHOUT
OPERATING SYSTEM INTERVENTION

BACKGROUND OF THE INVENTION

1. Field of the Invention

The field of the invention is data processing, or, more
specifically, methods, apparatus, and products for creating a
thread of execution in a computer processor.

2. Description Of Related Art

In current computer architecture, execution of software
applications is carried out with processes that contain any
number of software threads of execution. Software threads of
execution are executed in hardware threads on a computer
processor. Software threads of execution are administered—
created, scheduled, maintained, and retired—Dby an operating
system. A process many contain hundreds or even thousands
of software threads. Administering large numbers of software
threads, however, requires an extremely large operational
overhead for an operating system. Current implementations
of thread creation, for example, are often inefficient.

SUMMARY

Apparatus, and products are disclosed for creating a thread
of execution in a computer processor. In embodiments of the
present invention, creating a thread of execution in a com-
puter processor includes copying, as indicated by a hardware
processor opcode called by a user-level process, data from a
first set of registers to a second set of registers, wherein the
first set of registers is associated with a parent hardware
thread. The first set of registers is associated with a parent
hardware thread and the second set of registers is associated
with a child hardware thread. The first set of registers and the
second set of registers are located on the computer processor.
The child hardware thread is in a wait state. Creating a thread
of'execution in a computer processor also includes changing,
as indicated by the hardware processor opcode, the child
hardware thread from the wait state to an ephemeral run state.
The ephemeral run state indicates a lack of operating system
support structures for the child hardware thread.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 sets forth a block diagram of an example computer
system in which a thread of execution is created in a computer
processor according to embodiments of the present invention.

FIG. 2 sets forth an example state machine for a thread of
execution in a computer processor in accordance with
embodiments of the present invention.

FIG. 3 sets forth a flow chart illustrating an exemplary
method for creating a thread of execution in a computer
processor according to embodiments of the present invention.

FIG. 4 sets forth a flow chart illustrating a further exem-
plary method for creating a thread of execution in a computer
processor according to embodiments of the present invention.

FIG. 5 sets forth a flow chart illustrating a further exem-
plary method for creating a thread of execution in a computer
processor according to embodiments of the present invention.

FIG. 6 sets forth a flow chart illustrating a further exem-
plary method for creating a thread of execution in a computer
processor according to embodiments of the present invention.

FIG. 7 sets forth a flow chart illustrating a further exem-
plary method for creating a thread of execution in a computer
processor according to embodiments of the present invention.

10

20

25

40

45

55

2

DETAILED DESCRIPTION OF EXEMPLARY
EMBODIMENTS

Exemplary methods, apparatus, and products for creating a
thread of execution in a computer processor in accordance
with the present invention are described with reference to the
accompanying drawings, beginning with FIG. 1. FIG. 1 sets
forth a block diagram of an example system in which a thread
of execution is created in a computer processor according to
embodiments of the present invention. A thread of execution,
also referred to in this specification as a ‘software thread,” is
the smallest unit of processing that can be scheduled by an
operating system for execution on a processor. A thread is
typically contained inside a process. Multiple threads can
exist within the same process and share resources such as
memory, while different processes do not share these
resources. In particular, the threads of a process share the
process’s instructions and context—values variables have at
any given moment in execution. A ‘hardware’ thread, by
contrast, is implemented in hardware of a computer processor
and executes instructions of software threads. That is, support
for a hardware thread is built into the processor itself in the
form of a separate architectural register set for each hardware
thread, so that each hardware thread can execute simulta-
neously with no need for context switches among the hard-
ware threads. Each such hardware thread can run multiple
software threads of execution implemented with the software
threads assigned to portions of processor time called ‘quanta’
or ‘time slots’ and context switches that save the contents of a
set of architectural registers for a software thread during
periods when that software thread loses possession of its
assigned hardware thread.

The system of FIG. 1 includes an example computer (152),
automated computing machinery, configured to carry out
thread creation in a computer processor in accordance with
embodiments of the present invention. The computer (152) of
FIG. 1 includes at least one computer processor (156) or
‘CPU” as well as random access memory (168) (RAM”)
which is connected through a high speed memory bus (166)
and bus adapter (158) to processor (156) and to other com-
ponents of the computer (152).

Stored in RAM (168) of the example computer (152) are a
user-level application (138) and an operating system (154). A
user-level application is a module of computer program
instructions that carries out user-level data processing tasks.
Examples of such applications include word processing
applications, spreadsheet applications, database management
applications, media library applications, multimedia editing
applications, and others as will occur to readers of skill in the
art. Applications are described as ‘user-level” to distinguish
them from a ‘system-level” or ‘kernel-level” process, such as
the operating system (154) stored in RAM (168). Typically, in
prior art, execution of user-level applications are supported
by a system-level process: in executing a user-level applica-
tion an operating system, for example, may instantiate a pro-
cess, assign a process identifier to the process, assign a virtual
address space to the process, instantiate one or more software
threads of execution within the process, assign thread identi-
fiers to each of the software threads, schedule the software
threads for execution on the computer processor, manage
memory paging among user-level processes and software
threads, and so on as will occur to readers of skill in the art.
Also, once instantiated, a user-level process of the prior art
may create additional threads through system calls to the
operating system. Each such system call, results in a time and
resource consuming process. In this way, user-level applica-
tions may be described as operating ‘above’ or ‘on top of” a

US 8,561,070 B2

3

system-level application. Examples of operating systems use-
ful in computers in which threads of execution are created in
a computer processor according to embodiments of the
present invention include UNIX™, Linux™, Microsoft
XP™ ATX™ [BM’s i5/0S™, and others as will occur to
those of skill in the art. The user-level application (138), and
operating system (154) in the example of FIG. 1 are shown in
RAM (168), but many components of such software typically
are stored in non-volatile memory also, such as, for example,
on a disk drive (170).

In the example of FIG. 1, the operating system (154) has
created a process descriptor (140) that describes the process
for the user-level application (138). The process descriptor
(140) may specify a process identifier, an address space
assigned to the process, a status of resources allocated to a
process, a status of the process, a copy of processor registers
to reinstate upon a context switch in which the process is
restored, and so on as will occur to readers of skill in the art.
The operating system (154) in the example of FIG. 1 has also
instantiated a number of software threads, specified by thread
descriptors (142) stored in RAM (168). Thread descriptors
may specity a thread identifier, an address space assigned to
the process within which the thread is contained, a status of
resources allocated to the process within which the thread is
contained, a status of the thread, a copy of processor registers
to reinstate upon a context switch in which the thread is
restored, and so on as will occur to readers of skill in the art.

The software threads in the example of FIG. 1 for the
user-level application (138) are scheduled to execute within
hardware threads (120, 122) implemented in the processor
(156). That is, computer program instructions forming a
thread of the user-level application (138) are executed within
a hardware thread. Computer program instructions may be
executed within a hardware thread through use of an instruc-
tion decoder (132), an instruction dispatcher (134), and
execution units (136). An instruction decoder (132) is a net-
work of static and dynamic logic within the processor (156)
that retrieves instructions (118) from registers in the register
sets (124, 126) and decodes the instructions into microin-
structions for execution on execution units (136) within the
processor. An instruction to be decoded for execution, for
example may include an opcode (operation code). An opcode
is the portion of a machine language instruction that specifies
the operation to be performed. Apart from the opcode itself,
an instruction may also have one or more parameters, also
called operands, on which the operation should act, although
some operations may have implicit operands, or none at all.
Depending on the architecture of the processor upon which
the opcode is decoded and executed, the operands may be
register values, values in a call stack, other memory values,
1/0 ports, and the like. Once decoded, Execution units (136)
execute the microinstructions. Examples of execution units
include LOAD execution units, STORE execution units,
floating point execution units, execution units for integer
arithmetic and logical operations, and so on. The computer
processor (156) in the example of FIG. 1 also includes an
instruction dispatcher (134) that arbitrates, in the presence of
resource contention, priorities for dispatch of instructions
from the hardware threads (120, 122) of execution. The
instruction dispatcher (136) is a network of static and
dynamic logic within the processor (156) that dispatches
microinstructions to the execution units (136) in the processor
(156).

The processor (156) in the example system of FIG. 1,
operates generally for creating a thread of execution by copy-
ing, by a hardware processor opcode called by a user-level
process—in FIG. 1, the process implemented for the user-

10

30

35

40

45

50

55

60

65

4

level application (138) described by the process descriptor
(140)—with no operating system (154) involvement, register
contents (118) from a parent hardware thread (120) to a child
hardware thread (122). At the time the hardware processor
opcode copies the register contents (118) from the parent
hardware thread (120) to the child hardware thread (122), the
child hardware thread (122) is in a wait state (112). After
copying the register contents, the hardware processor opcode
(102), then changes the child hardware thread from the wait
state (112) to an ephemeral run state (112). The hardware
processor opcode (102) is described here as creating a thread
of execution in a computer processor in accordance with
embodiments of the present invention in that the opcode is
executed by the processor and the processor carries out
actions specified by the opcode.

In the example of FIG. 1, the hardware processor opcode
called by the user-level process (138) is a fork opcode (102)
that includes an operand specifying a maximum number
(104) of child hardware threads to change from the wait state
to the ephemeral run state, a location in which to store a
number (108) of child hardware threads changed from the
wait state to the ephemeral run state, a flag for the processor
to set in executing the opcode which indicates (106) whether
any child hardware threads were changed from the wait state
to the ephemeral run state, and a flag for the processor to set
in executing the opcode that identifies (110) the parent hard-
ware thread as a parent (rather than a child hardware thread).
In a similar manner, in changing the child hardware thread
(122) from the wait state (112) to the ephemeral run state
(112), the hardware processor opcode (102) may also set, for
the child hardware thread (122), a flag identifying (116) the
child hardware thread as a child and assign, by the hardware
processor opcode, a unique thread identifier (114) to the child
hardware thread including storing an integer in the a register
of'the child hardware thread. In the example of FIG. 1, a “flag’
may be implemented in various ways including for example,
as a value stored in a particular register, as one or more bits in
awell-known location, such as a condition code register of the
hardware thread, or in other ways as will occur to readers of
skill in the art.

The ‘state’ of the child hardware thread (122) in the
example of FIG. 1, is depicted as a value in a register (126)
associated with the child hardware thread. A hardware thread
as implemented in accordance with embodiments of the
present invention, and as described in greater detail with
respect to FIG. 2, below, may be set in one of three states: a
run state, a wait state, and an ephemeral run state. When in a
run state, a hardware thread has full operating system sup-
port—a thread descriptor and other system-level support, for
example. That is, when a hardware thread is in the run state,
the operating system has full knowledge of the hardware
thread, its existence and operation. In a wait state, the oper-
ating system has knowledge of the hardware thread’s exist-
ence, but the hardware thread is inactive from the perspective
of'the operating system. A hardware thread in the wait state is
not executing instructions of a software thread. When in the
wait state, a hardware thread may be changed to an ephemeral
run state without operating system support and may begin to
execute instructions. That is, without the operating system
instantiating a canonical thread descriptor for the hardware
thread, the hardware thread, once in the ephemeral run state
may execute software thread instructions. The ephemeral run
state is described as ‘ephemeral’ in that a hardware thread
executing in the ephemeral run state may (but is not required
to) complete execution and return to the wait state, never once
using operating system support.

US 8,561,070 B2

5

The computer (152) of FIG. 1 includes disk drive adapter
(172) coupled through expansion bus (160) and bus adapter
(158) to processor (156) and other components of the com-
puter (152). Disk drive adapter (172) connects non-volatile
data storage to the computer (152) in the form of disk drive
(170). Disk drive adapters useful in computers for creating a
thread of execution in a computer processor according to
embodiments of the present invention include Integrated
Drive Electronics (‘IDE’) adapters, Small Computer System
Interface (‘SCSI’) adapters, and others as will occur to those
of'skill in the art. Non-volatile computer memory also may be
implemented for as an optical disk drive, electrically erasable
programmable read-only memory (so-called ‘EEPROM’ or
‘Flash” memory), RAM drives, and so on, as will occur to
those of skill in the art.

The example computer (152) of FIG. 1 includes one or
more input/output (‘1/0”) adapters (178). 1/O adapters imple-
ment user-oriented input/output through, for example, soft-
ware drivers and computer hardware for controlling output to
display devices such as computer display screens, as well as
user input from user input devices (181) such as keyboards
and mice. The example computer (152) of FIG. 1 includes a
video adapter (209), which is an example of an 1/O adapter
specially designed for graphic output to a display device
(180) such as a display screen or computer monitor. Video
adapter (209) is connected to processor (156) through a high
speed video bus (164), bus adapter (158), and the front side
bus (162), which is also a high speed bus.

The exemplary computer (152) of FIG. 1 includes a com-
munications adapter (167) for data communications with
other computers (182) and for data communications with a
data communications network (100). Such data communica-
tions may be carried out serially through RS-232 connections,
through external buses such as a Universal Serial Bus
(‘USB’), through data communications networks such as IP
data communications networks, and in other ways as will
occur to those of skill in the art. Communications adapters
implement the hardware level of data communications
through which one computer sends data communications to
another computer, directly or through a data communications
network. Examples of communications adapters useful for
creating a thread of execution in a computer processor
according to embodiments of the present invention include
modems for wired dial-up communications, Ethernet (IEEE
802.3) adapters for wired data communications network com-
munications, and 802.11 adapters for wireless data commu-
nications network communications.

The arrangement of servers and other devices making up
the exemplary system illustrated in FIG. 1 are for explanation,
not for limitation. Data processing systems useful according
to various embodiments of the present invention may include
additional servers, routers, other devices, and peer-to-peer
architectures, not shown in FIG. 1, as will occur to those of
skill in the art. Networks in such data processing systems may
support many data communications protocols, including for
example TCP (Transmission Control Protocol), IP (Internet
Protocol), HT TP (HyperText Transfer Protocol), WAP (Wire-
less Access Protocol), HDTP (Handheld Device Transport
Protocol), and others as will occur to those of skill in the art.
Various embodiments of the present invention may be imple-
mented on a variety of hardware platforms in addition to those
illustrated in FIG. 1.

For further explanation, FIG. 2 sets forth an example state
machine for a thread of execution in a computer processor in
accordance with embodiments of the present invention. The
example state machine (200) of FIG. 2 includes three states:
a canonical run state (202), a wait state (204), and an ephem-

15

20

25

30

35

40

45

50

55

60

65

6

eral run state (206). Any hardware thread of a computer
processor implemented and configured in accordance with
embodiments of the present invention may, at any time, be in
one of these three states. The state of a hardware thread may
be represented by a value stored in a register associated with
the hardware thread and in other ways as will occur to readers
of skill in the art. Upon each change in a hardware thread’s
state, the value stored in the register is also changed to corre-
spond with the hardware thread’s current state.

In the run state (202), a hardware thread has full operating
system support—a canonical thread descriptor. That is, when
a hardware thread is in the run state (202), the operating
system has full knowledge of the hardware thread, its exist-
ence and operation. Software threads of execution are
executed in the hardware thread as scheduled by the operating
system, with context switches and time slices. A software
thread executing a hardware thread in the run state (202) may
cause the hardware thread (202) to enter a wait state by calling
‘wait’ opcode (210)—a machine instruction that when
executed by the processor causes the processor to change a
hardware thread’s state from the run state (202) to the wait
state (204).

Inthe wait state (204), the operating system has knowledge
of the hardware thread’s existence, but the hardware thread is
inactive from the perspective of the operating system. A hard-
ware thread in the wait state is not executing instructions of a
software thread. A hardware thread may return from the wait
state upon an interrupt (208) thereby invoking an interrupt
handler of the operating system. Alternatively, a user-level
process executing in another hardware thread (referred to as a
parent hardware thread here) may execute a hardware proces-
sor opcode—fork. rt,rn (214), for example—copying with no
operating system involvement, register contents from parent
hardware thread to the hardware thread in the wait state (204)
and change, by the hardware processor opcode, the hardware
thread from the wait state (204) to an ephemeral run state
(206). The hardware thread changed from the wait state (204)
to the ephemeral run state (206) is referred to now as a child
hardware thread. In this example, ‘ft” and ‘rn’ are parameters
of the fork opcode (214) that specify a number of threads
actually created and maximum number of child threads to
create.

In the ephemeral run state (206), the child hardware thread
may execute instructions copied from the register of the par-
ent hardware thread. If the child hardware thread completes
execution ofthe instructions, the child hardware may return to
the wait state (204)—again, without operating system
involvement. That is, instruction executing in the child hard-
ware thread may include the previously described wait
opcode (212) which will cause the processor to change the
state of the child hardware thread from the ephemeral run
state (206) to the wait state (204). In this way, a child hard-
ware thread may run to completion without the operating
system having any knowledge of the child hardware thread’s
operation.

From time to time, however, the child hardware thread may
need operating system support, or the child hardware thread
may be required for use by the operating system for some
other task. For example, a child hardware thread in the
ephemeral run state (206) may call an operating system func-
tion, the processor may receive an asynchronous interrupt of
the child hardware thread, thereby invoking an interrupt han-
dler of the operating system, or the child hardware thread may
cause an execution exception thereby invoking an interrupt
handler of the operating system (216), and so on as will occur
to readers of skill in the art. In each such case, the operating
system then creates, a canonical operating system thread

US 8,561,070 B2

7

descriptor for the child hardware thread and the child hard-
ware thread returns to the run (202) state. The operating
system may create the child’s canonical operating system
thread descriptor from another operating system thread
descriptor, such as the a thread descriptor of the user-level
process, or a thread descriptor of a software thread executing
in the parent hardware thread.

For further explanation, FIG. 3 sets forth a flow chart
illustrating an exemplary method for creating a thread of
execution in a computer processor according to embodiments
of the present invention. The method of FIG. 3 includes
copying (302), by a hardware processor opcode (102) called
(318) by a user-level process (316), with no operating system
involvement, register contents (320) from a parent hardware
thread (120) to a child hardware thread (122). In the method
of FIG. 3, at the time the hardware process opcode (102) is
called (318) by a user-level process, the child hardware thread
(122) is in a wait state (204). Copying (302) register contents
may includes copying the parent hardware threads architec-
tural registers, instructions stored in the registers, variable
values, instruction counter value, and so on as will occur to
readers of skill in the art.

The method of FIG. 3 also includes changing (304), by the
hardware processor opcode (102), the child hardware thread
(122) from the wait state (204) to an ephemeral run state
(206). Changing (304) the child hardware thread (122) from
the wait state (204) to an ephemeral run state (206) may be
carried out in various ways including, for example, by a
setting a pre-designated flag, flipping a bit in a well-known
location, or storing a predefined value in a register designated
for storing state information. In the method of FIG. 3, chang-
ing (304), by the hardware processor opcode (102), the child
hardware thread (122) from the wait state (204) to an ephem-
eral run state (206) includes setting (306), by the hardware
processor opcode (102) for the child hardware thread (122), a
flag (116) identifying the child hardware thread (122) as a
child and assigning (308), by the hardware processor opcode
(102), a unique thread identifier (106) to the child hardware
thread. Assigning (308) a unique thread identifier (106) to the
child hardware thread (122) may be carried out by storing an
integer in a register of the child hardware thread.

The method of FIG. 3 also includes setting (310), by the
hardware processor opcode (102) for the parent hardware
thread (120), a flag (106) indicating whether any child hard-
ware threads (122) were changed from the wait state (204) to
the ephemeral run state (206). Setting (310) the flag may be
carried out various ways including for example, by flipping a
bit in a condition code register designated for such a purpose,
by storing a value in a register designated for storing such
flag, and in other ways as will occur to readers of skill in the
art.

In the method of FIG. 3, the hardware processor opcode
(102) also includes an operand (322) specifying a maximum
number of child hardware threads to change from the wait
state to the ephemeral run state, and the method of FIG. 3
includes returning (312), by the hardware processor opcode
(102) to the user-level process (316), a number (108) of child
hardware threads (122) changed from the wait state (204) to
the ephemeral run state (206). A hardware processor opcode
may specify more child hardware threads to change from the
wait state to the ephemeral run state than are available in the
wait state or that are allowed, based on predefined rules, to
change at a given time. In this way, the hardware processor
opcode effectively creates as many child hardware threads as
are available, up to the maximum requested number, while

25

40

45

55

8

informing the hardware thread originally executing the hard-
ware processor opcode of the actual number of child hard-
ware threads created.

The method of FIG. 3 also includes setting (314), by the
hardware processor opcode (102) for the parent hardware
thread (120), a flag (110) identifying the parent hardware
thread (120) as a parent. The flag enables a thread to effi-
ciently—quickly and with low computational overhead—
determine the characterization of a hardware thread, whether
parent or child. The flag, for example, may be implemented as
a bit in a condition code register, which may be efficiently
compared directly by hardware.

As explained above withrespectto FIG. 2, a child hardware
thread, once in the ephemeral run state (206) may exit the
state and return to a run state (202) under several different
circumstances. These circumstances are described below in
further detail with regard to FIGS. 4, 5, and 6. FIG. 4, there-
fore, sets forth a flow chart illustrating a further exemplary
method for creating a thread of execution in a computer
processor according to embodiments of the present invention.
The method of FIG. 4 is similar to the method of FIG. 3, in
that the method of FIG. 4 includes copying (302), by a hard-
ware processor opcode (102) called (318) by a user-level
process (316), with no operating system involvement, register
contents (320) from a parent hardware thread (120) to a child
hardware thread (122), the child hardware thread (122) being
in a wait state (204); and changing (304), by the hardware
processor opcode (102), the child hardware thread (122) from
the wait state (204) to an ephemeral run state (206).

The method of FIG. 4, differs from the method of FIG. 3,
however, in that the method of FIG. 4 includes calling (402),
by the child hardware thread, an operating system function
(406) and creating (404), by the operating system (404), a
canonical operating system thread descriptor (410) for the
child hardware thread (122). The operating system (404) may
create the child’s canonical operating system thread descrip-
tor (410) from another operating system thread descriptor
(408), such as a thread descriptor of a software thread execut-
ing in the parent hardware thread (120).

As explained above a canonical thread descriptor (410) is
an operating system’s description of a software thread of
execution, its resources, memory space, current variable val-
ues, context, and so on as will occur to readers of skill in the
art. Prior to creating a canonical thread descriptor (410) for
the child hardware thread (122), the operating system has no
knowledge that the child hardware thread is executing
instructions. By creating a canonical thread descriptor, the
child hardware thread—and the software thread executing
within the hardware thread—effectively matures into a full-
blow, operating system acknowledged, maintained, and
administered, thread of execution.

For further explanation, FIG. 5 sets forth a flow chart
illustrating a further exemplary method for creating a thread
of execution in a computer processor according to embodi-
ments of the present invention. The method of FIG. 5 is
similar to the method of FIG. 3, in that the method of FIG. 5
includes copying (302), by a hardware processor opcode
(102) called (318) by a user-level process (316), with no
operating system involvement, register contents (320) from a
parent hardware thread (120) to a child hardware thread
(122), the child hardware thread (122) being in a wait state
(204); and changing (304), by the hardware processor opcode
(102), the child hardware thread (122) from the wait state
(204) to an ephemeral run state (206).

The method of FIG. 5, differs from the method of FIG. 3,
however, in that the method of FIG. 5 includes receiving
(502), by the computer processor, an asynchronous interrupt

US 8,561,070 B2

9

(506) of the child hardware thread (122) thereby invoking an
interrupt handler (512) of the operating system and creating
(504), by the operating system, a canonical operating system
thread descriptor (510) for the child hardware thread (122).
The operating system may create the child’s canonical oper-
ating system thread descriptor (510) from another operating
system thread descriptor (508). Examples of such asynchro-
nous interrupts (506) may include a quant timeout, a timer
interrupt, an external interrupt unrelated to the child hardware
thread that causes the OS to return the child hardware thread
to a run state (202), an inter-processor interrupts such as an
unexpected message from another processor, and so on as will
occur to readers of skill in the art.

For further explanation, FIG. 6 sets forth a flow chart
illustrating a further exemplary method for creating a thread
of execution in a computer processor according to embodi-
ments of the present invention. The method of FIG. 6 is
similar to the method of FIG. 3, in that the method of FIG. 6
includes copying (302), by a hardware processor opcode
(102) called (318) by a user-level process (316), with no
operating system involvement, register contents (320) from a
parent hardware thread (120) to a child hardware thread
(122), the child hardware thread (122) being in a wait state
(204); and changing (304), by the hardware processor opcode
(102), the child hardware thread (122) from the wait state
(204) to an ephemeral run state (206).

The method of FIG. 6, differs from the method of FIG. 3,
however, in that the method of FIG. 6 includes causing (602),
by the child hardware thread (122), an execution exception
(606) thereby invoking an interrupt handler (612) of the oper-
ating system and creating (604), by the operating system, a
canonical operating system thread descriptor (610) for the
child hardware thread (122). The operating system may cre-
ate (604) the child’s canonical operating system thread
descriptor from another operating system thread descriptor
(608). Examples of execution exceptions (606) may include a
memory fault, execution of an illegal instruction, a division
by zero, and so on as will occur to readers of skill in the art.

FIGS. 4, 5, 6, set forth various ways in which a child
hardware thread may be changed from the ephemeral run
state (206) to the run state (202). A child hardware thread
configured in accordance with embodiments of the present
invention, however, may also change from an ephemeral run
state (206) to a wait state (204). For further explanation there-
fore, FIG. 7 sets forth a flow chart illustrating a further exem-
plary method for creating a thread of execution in a computer
processor according to embodiments of the present invention.
The method of FIG. 7 is similar to the method of FIG. 3, in
that the method of FIG. 7 includes copying (302), by a hard-
ware processor opcode (102) called (318) by a user-level
process (316), with no operating system involvement, register
contents (320) from a parent hardware thread (120) to a child
hardware thread (122), the child hardware thread (122) being
in a wait state (204); and changing (304), by the hardware
processor opcode (102), the child hardware thread (122) from
the wait state (204) to an ephemeral run state (206).

The method of FIG. 7 differs from the method of FIG. 3,
however, in that the method of FIG. 7 includes executing
(704) a hardware processor opcode (702) in the child hard-
ware thread and returning (704), by the hardware processor
opcode executed in the child hardware thread (122), the child
hardware thread to the wait state (204). That is, in addition to
a hardware processor opcode executed in parent thread that
changes a state of a child thread from a wait state to an
ephemeral state, the method of FIG. 7 also includes a hard-
ware processor opcode executed in the child thread that the
changes the state of the child thread from the ephemeral state

10

15

20

25

30

40

45

50

55

60

65

10

back to the wait state. In this way, at the hardware processor
opcode level, without operating system interaction, a thread
of execution may be created in an available hardware thread
(ahardware thread in the wait state), executed in the hardware
thread, and the hardware thread may be returned to the wait
state for future availability.

In view of the explanations set forth above, readers will
recognize that the benefits of creating a thread of execution in
a computer processor according to embodiments of the
present invention include:

Thread creation of a single thread is extremely lightweight,

involving no operating system overhead.

Thread creation of many threads may be carried out in
parallel and on demand, rather than serially for each of
the many thread; and

Thread creation occurs in the same amount of computer
time to create any number of child threads.

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in one
ormore computer readable medium(s) having computer read-
able program code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable transmission medium or a computer
readable storage medium. A computer readable storage
medium may be, for example, but not limited to, an elec-
tronic, magnetic, optical, electromagnetic, infrared, or semi-
conductor system, apparatus, or device, or any suitable com-
bination of the foregoing. More specific examples (a non-
exhaustive list) of the computer readable storage medium
would include the following: an electrical connection having
one or more wires, a portable computer diskette, a hard disk,
a random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), an optical fiber, a portable com-
pact disc read-only memory (CD-ROM), an optical storage
device, a magnetic storage device, or any suitable combina-
tion of the foregoing. In the context of this document, a
computer readable storage medium may be any tangible
medium that can contain, or store a program for use by or in
connection with an instruction execution system, apparatus,
or device.

A computer readable transmission medium may include a
propagated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable transmission medium may be any computer
readable medium that is not a computer readable storage
medium and that can communicate, propagate, or transport a
program for use by or in connection with an instruction
execution system, apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any com-

US 8,561,070 B2

11

bination of one or more programming languages, including
an object oriented programming language such as Java™,
Smalltalk, C++ or the like and conventional procedural pro-
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a standalone software package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

Aspects of the present invention are described above with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, in some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams
and/or flowchart illustration, can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard-
ware and computer instructions.

20

25

30

40

45

50

55

12

It will be understood from the foregoing description that
modifications and changes may be made in various embodi-
ments of the present invention without departing from its true
spirit. The descriptions in this specification are for purposes
of illustration only and are not to be construed in a limiting
sense. The scope of the present invention is limited only by
the language of the following claims.

What is claimed is:

1. An apparatus for creating a thread of execution in a
computer processor, the apparatus comprising a computer
processor, a computer memory operatively coupled to the
computer processor, the computer memory having disposed
within it computer program instructions that, when executed
by the computer processor, cause the computer processor to:

copy, as indicated by a hardware processor opcode, the

hardware processor opcode having been specified by a
user-level process, data from a first set of registers to a
second set of registers, wherein the first set of registers is
associated with a parent hardware thread, wherein the
second set of registers is associated with a child hard-
ware thread, wherein the first set of registers and the
second set of registers are located on the computer pro-
cessor, wherein the child hardware thread is in a wait
state; and

change, as indicated by the hardware processor opcode, the

child hardware thread from the wait state to an ephem-
eral run state, wherein the ephemeral run state indicates
a lack of operating system support structures for the
child hardware thread.

2. The apparatus of claim 1 further comprising computer
program instructions that, when executed by the computer
processor, cause the computer processor to:

call, by the child hardware thread, an operating system

function; and

create, by the operating system, a canonical operating sys-

tem thread descriptor for the child hardware thread.

3. The apparatus of claim 1 further comprising computer
program instructions that, when executed by the computer
processor, cause the computer processor to:

receive, by the computer processor, an asynchronous inter-

rupt of the child hardware thread thereby invoking an
interrupt handler of the operating system; and

create, by the operating system, a canonical operating sys-

tem thread descriptor for the child hardware thread.

4. The apparatus of claim 1 further comprising computer
program instructions that, when executed by the computer
processor, cause the computer processor to:

generate, by the child hardware thread, an execution excep-

tion that invokes an interrupt handler of the operating
system; and

create, by the operating system, a canonical operating sys-

tem thread descriptor for the child hardware thread.

5. The apparatus of claim 1 wherein the hardware proces-
sor opcode further comprises an operand specifying a maxi-
mum number of child hardware threads to change from the
wait state to the ephemeral run state, and the apparatus further
comprises computer program instructions that, when
executed by the computer processor, cause the computer pro-
cessor to return, as indicated by the hardware processor
opcode to the user-level process, a number of child hardware
threads changed from the wait state to the ephemeral run
state.

6. The apparatus of claim 1 further comprising computer
program instructions that, when executed by the computer
processor, cause the computer processor to set, as indicated
by the hardware processor opcode for the parent hardware

