US008417913B2

a2z United States Patent (10) Patent No.: US 8,417,913 B2
Elnozahy et al. 45) Date of Patent: *Apr. 9,2013
(54) SUPERPAGE COALESCING WHICH 5,974,507 A 10/1999 Arimilli et al.
SUPPORTS READ/WRITE ACCESS TO A NEW o07.220 A 1 02000 cutshall etal oo a0
,085, arkhanis et al. ..
O A e s PURING 6175906 B1* 1/2001 Chiistie ... 711207
(Continued)
(75) Inventors: Elmootazbellah Nabil Elnozahy,
Austin, TX (US); James Lyle Peterson, OTHER PUBLICATIONS
Au§tln, D¢ (US);. Ramakrishnan . Romer et al. “Reducing TLB and Memory Overhead Using Online
Raj amony, Austin, TX (US); Hazim Superpage Promotion”, Jun. 22-24, 1995, 22nd Annual International
Shafi, Austin, TX (US) Symposium on Computer Architecture, pp. 176-187 *
(73) Assignee: International Business Machines (Continued)
Corporation, Armonk, NY (US)
Primary Examiner — Arpan P. Savla
(*) Notice: Subject to any disclaimer, the term of this (74) Attorney, Agent, or Firm — Dwayne Nelson; Jack V.
patent is extended or adjusted under 35 Musgrove
U.S.C. 154(b) by 2560 days.
This patent is subject to a terminal dis- 7 ABSTRACT
claimer. A method of assigning virtual memory to physical memory in
a data processing system allocates a set of contiguous physi-
(21) Appl. No.: 10/713,733 cal memory pages for a new page mapping, instructs the
memory controller to move the virtual memory pages accord-
(22) Filed: Nov. 13, 2003 ing to the new page mapping, and then allows access to the
. L virtual memory pages using the new page mapping while the
(65) Prior Publication Data memory controller is still copying the virtual memory pages
US 2005/0108496 Al May 19, 2005 to the set of phy.sical memory pages. The.memory cont.roller
can use a mapping table which temporarily stores entries of
(51) Int.Cl the old and new page addresses, and releases the entries as
GO6F 12/00 (2006.01) cppying for each entry is .completed. The translation looka-
(52) US.CL ... 711/202; 711/154; 711/162; 711/170, Side buffer (TLB) entries in the processor cores are updated
711/203; 711/206; 711/207 for the new page addresses prior to completion of copying of
(58) Field of Classification Search 711/154, the memory pages by the memory controller. The invention
711/162. 170. 202. 203. 206. 207 can be extended to non-uniform memory array (NUMA)
g lication file f Jete search history. systems. For systems with cache memory, any cache entry
c¢ apphication ftie for coffipiete search stoty which is affected by the page move can be updated by modi-
(56) References Cited fying its address tag according to the new page mapping. This

U.S. PATENT DOCUMENTS

5,206,939 A * 4/1993 Yanaietal ... 7114
5,386,526 A 1/1995 Mitra et al.

5,784,707 A * 7/1998 Khalidietal. 711/206
5,835964 A * 11/1998 Dravesetal. 711/207

0S INFORMS
MEMORY
CONTROLLER

(’BE

tag modification may be limited to cache entries in a dirty
coherency state. The cache can further relocate a cache entry
based on a changed congruence class for any modified
address tag.

20 Claims, 5 Drawing Sheets

80

05 NEEDS
SUPERPAGE

92

0S ALLOCATES
PAGES
94

MEMORY

(OS USES NEW
MAPPING)

CONTROLLER
CREATES MAPPING

T

CHANGE TLB
ENTRIES

]
MEMORY

STALL WRITES AT
TLE
1

UPDATE CACHES.

98

oo

02

04

CONTROLLER
COPIES PAGES

{REDIRECT READ/

WRITES)
108

COPYING COMPLETE

US 8,417,913 B2
Page 2

U.S. PATENT DOCUMENTS

6,182,198 B1* 1/2001 Hubisetal. 711/162
6,212,613 B1* 4/2001 Belaircccooovviinnnne 711207
6,275,897 Bl 8/2001 Bachmat

6,341,341 B1* 1/2002 Grummonetal. 711/162
6,434,670 Bl 8/2002 Arimilli et al.

6,434,681 B1* 8/2002 Armangau 711/162

6,477,612 B1* 11/2002 Wang e 71172
6,725,289 B1* 4/2004 Waldspurger et al ... 710/9
6,732,238 B1* 5/2004 Evansetal. ... 711/128
6,904,490 B2* 6/2005 Arimilli et al. . . 7115
6,907,494 B2* 6/2005 Arimillietal. 711/5
7,117,312 Bl ~ 10/2006 Cypher

OTHER PUBLICATIONS

Tanenbaum, Andrew S., “Structured Computer Organization”, 1984,
Prentice-Hall, Inc., 2nd Edition, pp. 10-12.*

Talluri et al. “Surpassing the TLB performance of superpages with
less operating system support”, 1994, ACM SIGOPS Operating Sys-
tems Review, vol. 28, Issue 5.*

Hennessy, John L., Patterson, David A., “Computer Organization and
Design, The Hardware/Software Interface”, 1998, Morgan
Kaufmann Publishers, Inc., Second Edition, pp. 657, 658, 668.*
Romer et al., “Reducing TLB and Memory Overhead Using Online
Superpage Promotion,” 1995.

Fang et al., “Reevaluating Online Superpage Promotion with Hard-
ware Support”.

Handy, Jim, “The Cache Memory Book,” 1998, Academic Press, in.c,
Second Edition, pp. 12-14, 19, 20, 22, 44-47, 66, 76, 98, 138, 148.
Swanson, Mark, et al., “Increasing TLB Read Using Superpages
Backed by Shadow Memory,” 1998, The 25th Annual International
Symposium on Computer Architecture, pp. 204-213.

* cited by examiner

US 8,417,913 B2

Sheet 1 of 5

Apr.9,2013

U.S. Patent

(Sov¥)

ASOWIN S3DIAIA O/I BT

nm | ¢ A mm P
Coz
(21) IHOVD (27) IHOVD
0¢/]
JHOVD JHOVD
HOVIVLVA (] NoronyLsni HOVI VIVA 1 NoronaLsni
I¥00 40SSID0¥d 2z 30D ¥OSSIOONd

LINN ONISSID0¥d LINN DNISSID0¥d Cae
mun ¢l Nm Z

U.S. Patent Apr. 9, 2013 Sheet 2 of 5 US 8,417,913 B2

4 GB

4 GB

VIRTUAL
MEMORY PHYSICAL
PROCESS 1 (322 MEMORY
| 34
® j 1 6
PROCESS 2 (32b
64 GB

Fig. 2
Prior Art

U.S. Patent Apr. 9, 2013 Sheet 3 of 5 US 8,417,913 B2

_f4 2
MEMORY CONTROLLER
- | /‘\I4 0
FROM T0
46 U
50 48
» ==
DMA | = STATE
ENGINE] | ENGINE T , 3
4.
l g
y i %4 4
MAIN MEMORY
70
%
CACHE
72 78
< <
CACHE B | STATE
CONTROLLER | ~ | MACHINE
'
W R
Q’7 4 y q 6
DATA TAG
ARRAY ARRAY
80

Fig. 5

US 8,417,913 B2

Sheet 4 of 5

Apr.9,2013

U.S. Patent

r Ol

\\/\ avg \\/\\ R AY

AJOW3IN AHOW3N
. 4 oL
14 vf
d4TI04LNOD JOV4441NI JOV443LNI J3T104LNOD
AJOWNIN NJOMLIN NHJOMLAN AJONW3N
e o > |
| s =
dHOVO JHOVO .. JHIVO JHIOVO
40SS300¥d d0SS300¥d 40SSI00¥d JOSS300dd
({\/ -

U.S. Patent

Apr.9,2013

%90

Sheet 5 of 5

OS N

EEDS

SUPERPAGE

)

' %9 2

OS ALLOCATES
PAGES

T

OS INFORMS
MEMORY
CONTROLLER

\

’ %9 6

CREATES

MEMORY
CONTROLLER

MAPPING

(OS USES NEW
MAPPING)

\

' %9 8

STALL W

RITES AT

TLB

[_qoo

UPDATE

CACHES

102
g

ENT

CHANGE TLB

RIES

[g

COPIES

MEMORY
CONTROLLER

PAGES

(REDIRECT READ/
WRITES)

Y

106
%

COPYING COMPLETE

US 8,417,913 B2

71y 6

US 8,417,913 B2

1

SUPERPAGE COALESCING WHICH
SUPPORTS READ/WRITE ACCESS TO A NEW
VIRTUAL SUPERPAGE MAPPING DURING
COPYING OF PHYSICAL PAGES

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention generally relates to computer sys-
tems, specifically to memory subsystems for computers, and
more particularly to a method of providing efficient mappings
between virtual memory and physical memory.

2. Description of the Related Art

The basic structure of a conventional computer system 10
is shown in FIG. 1. Computer system 10 may have one or
more processing units, two of which 12a¢ and 124 are
depicted, which are connected to various peripheral devices,
including input/output (I/0O) devices 14 (such as a display
monitor, keyboard, and permanent storage device), memory
device 16 (such as random access memory or RAM) that is
used by the processing units to carry out program instruc-
tions, and firmware 18 whose primary purpose is to seek out
and load an operating system from one of the peripherals
(usually the permanent memory device) whenever the com-
puter is first turned on. Processing units 12a and 1256 com-
municate with the peripheral devices by various means,
including a generalized interconnect or bus 20. Computer
system 10 may have many additional components which are
not shown, such as serial, parallel and universal bus ports for
connection to, e.g., modems or printers. Those skilled in the
art will further appreciate that there are other components that
might be used in conjunction with those shown in the block
diagram of FIG. 1; a display adapter might be used to control
a video display monitor, a memory controller can be used to
access memory 16, etc. Also, instead of connecting 1/O
devices 14 directly to bus 20, they may be connected to a
secondary (1/O) bus which is further connected to an 1/O
bridge to bus 20. The computer can have more than two
processing units.

In a symmetric multi-processor (SMP) computer, all of the
processing units are generally identical, that is, they all use a
common set or subset of instructions and protocols to operate,
and generally have the same architecture. A typical architec-
tureis shown in FIG. 1. A processing unit includes a processor
core 22 having a plurality of registers and execution units,
which carry out program instructions in order to operate the
computer. An exemplary processing unit includes the Pow-
erPC™ processor marketed by International Business
Machines Corp. The processing unit can also have one or
more caches, such as an instruction cache 24 and a data cache
26, which are implemented using high speed memory
devices. Caches are commonly used to temporarily store val-
ues that might be repeatedly accessed by a processor, in order
to speed up processing by avoiding the longer step of loading
the values from memory 16. These caches are referred to as
“on-board” when they are integrally packaged with the pro-
cessor core on a single integrated chip 28. Each cache is
associated with a cache controller (not shown) that manages
the transfer of data between the processor core and the cache
memory.

A processing unit 12 can include additional caches, such as
cache 30, which is referred to as a level 2 (L.2) cache since it
supports the on-board (level 1) caches 24 and 26. In other
words, cache 30 acts as an intermediary between memory 16
and the on-board caches, and can store a much larger amount
of information (instructions and data) than the on-board
caches can, but at a longer access penalty. For example, cache

10

15

20

25

30

35

40

45

50

55

60

65

2

30 may be a chip having a storage capacity of 256 or 512
kilobytes, while the processor may be an IBM PowerPC™
604-series processor having on-board caches with 64 kilo-
bytes of total storage. Cache 30 is connected to bus 20, and all
loading of information from memory 16 into processor core
22 usually comes through cache 30. Although FIG. 1 depicts
only a two-level cache hierarchy, multi-level cache hierar-
chies can be provided where there are many levels of inter-
connected caches. The main memory can further be distrib-
uted among many processor clusters in a non-uniform
memory array (NUMA).

A cache has many blocks which individually store the
various program instruction and operand data values. The
blocks in any cache are divided into groups of blocks called
sets or congruence classes. A set is the collection of cache
blocks that a given memory block can reside in. For any given
memory block, there is a unique set in the cache that the block
can be mapped into, according to preset mapping functions.
The number ofblocks in a set is referred to as the associativity
of the cache, e.g. 2-way set associative means that for any
given memory block there are two blocks in the cache that the
memory block can be mapped into; however, several different
blocks in main memory can be mapped to any given set. A
1-way set associate cache is direct mapped, that is, there is
only one cache block that can contain a particular memory
block. A cache is said to be fully associative if a memory
block can occupy any cache block, i.e., there is one congru-
ence class, and the address tag is the full address of the
memory block.

An exemplary cache line (block) includes an address tag
field, a state bit field, an inclusivity bit field, and a value field
for storing the program instruction or operand data. The state
bit field and inclusivity bit fields are used to maintain cache
coherency in a multiprocessor computer system (to indicate
the validity of the value stored in the cache). For example, a
coherency state can be used to indicate that a cache line is
valid but not necessarily consistent with main memory, i.e.,
when a process has written a value to that cache line but the
value has not yet migrated down the memory hierarchy to
“system” memory (such a cache line is referred to as
“dirty”). The address tag is a subset of the full address of the
corresponding memory block. A compare match of an incom-
ing address with one of the tags within the address tag field
indicates a cache “hit.” The collection of all of the address
tags in a cache (and sometimes the state bit and inclusivity bit
fields) is referred to as a directory, and the collection of all of
the value fields is the cache entry array.

When all of the blocks in a congruence class for a given
cache are full and that cache receives a request, whether a read
or write, to a memory location that maps into the full congru-
ence class, the cache must evict one of the blocks currently in
the class. The cache chooses a block by one of a number of
means known to those skilled in the art (least recently used
(LRU), random, pseudo-L.RU, etc.) to be evicted. Ifthe data in
the chosen block is modified, that data is written to the next
lowest level in the memory hierarchy which may be another
cache (in the case of the L1 or on-board cache) or main
memory (in the case of an L2 cache, as depicted in the two-
level architecture of FIG. 1). By the principle of inclusion, the
lower level of the hierarchy will already have a block avail-
able to hold the written modified data. However, if the data in
the chosen block is not modified, the block is simply aban-
doned and not written to the next lowest level in the hierarchy.
This process of removing a block from one level of the hier-
archy is known as an eviction. At the end of this process, the
cache no longer holds a copy of the evicted block.

US 8,417,913 B2

3

Memory is utilized by program applications as illustrated
in FIG. 2. A program application is compiled using relative
memory addresses, referred to as virtual memory, that corre-
spond to locations in physical memory. For example, two
processes 32a, 32b might each utilize virtual memory
addresses from zero to four gigabytes (GB), but these virtual
addresses map to different physical addresses in memory 16,
which may provide a total physical memory of 64 GB. The
memory for a process is divided into multiple “pages” to
make more efficient use of physical memory, since a process
usually does not need access to all virtual memory space at
any given time. Virtual memory mapping allows multiple
processes to share a given physical page of memory, as indi-
cated at physical page 34. The virtual-to-physical memory
mapping is handled in processor core 22 by providing a
translation lookaside buffer (TLB) 29 whose entries keep
track of current virtual-to-physical address assignments.

Many computer architectures support multiple virtual page
sizes. Large pages (larger than the smallest virtual page size)
are sometimes referred to as “superpages,” and these virtual
superpages map to similarly sized “super” physical pages.
Thus, in a system where the page size is 4 kilobytes (KB), a
virtual superpage of 64 KB maps to 16 contiguous 4-KB
physical pages making up 64 KB. Superpages typically have
alignment requirements both in the virtual and physical
address spaces. Thus a 64 KB virtual superpage would typi-
cally have to be aligned on a 64 KB boundary. Similarly, the
64 KB of physical page to which it maps would also have to
be aligned on a 64 KB boundary. However, the use of super-
pages gives rise to a tradeoft. While superpages can improve
the TLB hit rate by reducing the number of entries that need
to be concurrently maintained in the TLB, they can also lead
to underutilization of the physical memory if the application
does not use the entire superpage.

This tradeoff can be resolved by providing the ability to
dynamically vary the superpage size based on an applica-
tion’s needs. The notion of dynamically varying the super-
page size based on application execution characteristics is
known in the art; see, e.g., the article entitled “Reducing TLB
and Memory Overhead Using Online Superpage Promotion,”
by Romer et al. (22nd Annual Proceedings of the Interna-
tional Symposium on Computer Architecture, 1995). That
solution resorts to software-directed memory copying in
order to make a contiguous set of physical pages hold the
application data. This approach, however, still has draw-
backs. When the operating system (OS) determines that two
or more (super)pages have to be coalesced into a larger super-
page, it first sets aside a sufficiently large contiguous set of
physical pages to map the larger superpage, and flushes any
dirty lines from the caches. It next uses the processor to copy
data from the original set of physical pages to the physical
pages forming the superpage. Only after the copying is com-
pleted can the superpage be formed by coalescing page table
entries. During this time, the application continues to suffer
from poor TLB behavior.

An alternative method of handling this tradeoff uses a
hardware approach, as discussed in the article entitled
“Reevaluating Online Superpage Promotion with Hardware
Support,” by Fang et al. (Proceedings of the Seventh Interna-
tional Symposium on High Performance Computer Architec-
ture, pp. 63-72, January 2001). The Impulse approach does
not actually copy the pages over into new physical locations,
but instead provides an extra level of address remapping at the
main memory controller. The remapped addresses are
inserted into the TL.B as mappings for the virtual addresses.
The memory controller maintains its own page tables for
these “shadow” memory mappings. Impulse also has its

10

15

20

25

30

35

40

45

50

55

60

65

4

drawbacks. First of all, the physical superpage is not contigu-
ous. Secondly, the size of the memory controller page tables
limits the availability of remapped superpages, and the map-
ping table can quickly grow. In a typical 4 GB application
with 4 KB pages, the mapping table could easily require more
than one million entries. Finally, this lookup procedure is on
the critical path to memory access. These limitations are
exacerbated in NUMA systems having multiple memory con-
trollers.

In light of the foregoing, it would be desirable to devise an
improved method of superpage coalescing which is not lim-
ited by the size of hardware tables, but still allows the appli-
cation TLB behavior to improve immediately, i.e., without
waiting on software-directed copying. It would be further
advantageous if the method were easily adapted for use with
NUMA systems.

SUMMARY OF THE INVENTION

Itis therefore one object of the present invention to provide
an improved method of superpage coalescing in a data pro-
cessing system.

It is another object of the present invention to provide such
a method which facilitates efficient superpage coalescing
while reducing latentcies associated with page copying.

Itis yet another object of the present invention to provide a
hardware-supported method of migrating virtual-to-physical
memory mappings in amemory hierarchy which includes one
or more cache levels.

The foregoing objects are achieved in a method of assign-
ing virtual memory to physical memory in a data processing
system, generally comprising the steps of allocating a set of
aligned, contiguous physical memory pages for a new virtual
superpage, instructing a memory controller to move a plural-
ity of physical memory pages corresponding to the old map-
ping to the set of potentially different physical memory pages
corresponding to the new page mapping, and then accessing
the virtual memory pages making up the superpage using the
new page mapping while the memory controller is still copy-
ing the old physical memory pages to the new physical
memory pages. In one embodiment, the memory controller
uses a mapping table which temporarily stores entries of the
old and new page addresses, and releases the entries in the
mapping table as copying for each entry is completed. During
copying, accesses to the affected pages are handled as fol-
lows. Any read operation for an address of the new page
mapping which is currently being copied is directed to the
corresponding address of the old page mapping. Any write
operation for an address of the new page mapping which is
currently being copied is directed to both the address of the
new page mapping and the corresponding address of the old
page mapping. Any write operation for an address of the new
page mapping which has not yet been copied is directed only
to the corresponding address of the old page mapping. The
translation lookaside buffer (TLB) entries in the processor
cores are updated for the new page addresses prior to comple-
tion of copying of the memory pages by the memory control-
ler. The invention can be extended to non-uniform memory
array (NUMA) systems by allowing entries in one memory
controller to point to physical pages in the new page mapping
that are located in remote memory arrays controlled by other
memory controllers.

For systems with cache memory, any cache entry which is
affected by the page move is updated by modifying its address
tag according to the new page mapping. This tag modification
may be limited to cache entries in a dirty coherency state, that
is, only for those entries containing a valid value which is not

US 8,417,913 B2

5

present elsewhere in the memory hierarchy. The cache can
further relocate a cache entry based on a changed congruence
class for the modified address tag.

The above as well as additional objectives, features, and
advantages of the present invention will become apparent in
the following detailed written description.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention may be better understood, and its
numerous objects, features, and advantages made apparent to
those skilled in the art by referencing the accompanying
drawings.

FIG. 1 is a block diagram of a conventional computer
system, depicting a memory hierarchy which includes a main
memory device and multiple memory caches;

FIG. 2 is a pictorial representation of a conventional tech-
nique for virtual-to-physical memory mapping in a computer
system such as that shown in FIG. 1;

FIG. 3 is a block diagram of one embodiment of a memory
subsystem constructed in accordance with the present inven-
tion having a memory controller which allows a computer
system to quickly use newly mapped superpage addresses
while copying of the constituent pages is still underway;

FIG. 4 is a block diagram of one embodiment of a multi-
processor computer system having a non-uniform memory
array which may advantageously implement the present
invention using multiple memory controllers similar to the
memory controller of FIG. 3;

FIG. 5 is a block diagram of one embodiment of a cache
memory constructed in accordance with the present invention
which updates address tag information based on newly
mapped virtual-to-physical memory locations and relocates a
cache line with a changed associativity; and

FIG. 6 is a chart illustrating the logical flow according to
one implementation of the present invention.

The use of the same reference symbols in different draw-
ings indicates similar or identical items.

DESCRIPTION OF THE PREFERRED
EMBODIMENT(S)

With reference now to the figures, and in particular with
reference to FIG. 3, there is depicted one embodiment 40 of a
memory subsystem constructed in accordance with the
present invention. Memory subsystem 40 is generally com-
prised of a memory controller 42 and a system or main
memory array 44, and is adapted to facilitate superpage coa-
lescing for an operating system which controls virtual-to-
physical page mappings in a data processing system. The
operating system (OS) may have many conventional features
including appropriate software which determines page map-
pings, and decides when it is desirable to coalesce pages into
a larger (super)page; such details are beyond the scope of the
present invention but will become apparent to those skilled in
the art.

Memory subsystem 40 provides a hardware solution to
superpage coalescing which reduces or eliminates the poor
TLB behavior that occurs during the prior art software-di-
rected copying solution. In the present invention, the OS can
immediately change its mappings for the constituent pages
into one mapping for the new superpage, with close to zero
delay and without waiting for completion of the actual page
copying. The OS can use the new mappings right away
because the memory controller maintains a temporary map-
ping from the new physical pages back to the old physical

10

15

20

25

30

35

40

45

50

55

60

65

6

pages until the new physical pages are brought up to date. As
aresult, the application TLB behavior improves immediately.

Memory controller 42 has an input which receives read and
write instructions from a generalized interconnect or system
bus, and processes those instructions by accessing main
memory array 44 in a known manner. Memory controller 42
also receives memory management instructions, including
instructions regarding superpage coalescing. In particular,
memory controller 42 can receive instructions from the oper-
ating system which define a set of pages to be copied to new
physical memory locations as part of the coalescing process.
The old and new physical page addresses are stored tempo-
rarily in a mapping table 46. Mapping table 46 maintains the
mapping information while the page-to-page copying is
underway. Although the number of entries in mapping table
46 is limited, they are reusable since they are not needed once
the copying is complete, so repeated superpage formation is
unlimited. The number of entries in mapping table 46 may
vary depending upon the particular operating system and
page sizes involved, but a table having 32 slots is considered
exemplary.

Memory controller 42 may utilize a state engine 48 to step
through the copy process. State engine 48 sequentially reads
the paired FROM (o0ld) and TO (new) addresses in mapping
table 46 and controls a direct-memory access (DMA) engine
50 that is hidden from the operating system to carry out the
copying. DMA engine 50 runs in the background, that is,
without interrupting program processing. As copying of a
given page in mapping table 46 is lazily completed, that entry
is vacated by state engine 48, i.e., it is taken out of the
temporary mapping function, and no mapping remains once
all copying is complete. The OS can accordingly use the new
superpage mappings immediately without waiting for actual
copying of the physical pages, and read/write instructions to
those pages can be handled by memory controller 42 by
referring back to the old physical page addresses until the new
physical pages are brought up to date.

Referring now to FIG. 4, there is depicted one embodiment
of' a multiprocessor computer system 52 having a non-uni-
form memory array (NUMA), which may advantageously
utilize the present invention for page migration. Computer
system 52 has a plurality of processing clusters 54a, 54b.
While only two processing clusters are depicted, the system
could have more. A given processing cluster includes two or
more processing units 56 each comprised of a processor core
and one or more cache levels which are interconnected by a
system bus 58 to memory controller 42, local memory array
44, and a network interface 60. The processing clusters can
interact by means of an inter-processor communications bus
62 which interconnects two of the network interfaces 60.

Computer system 52 does not have a centralized main
memory, but rather distributes main memory across the many
local memory arrays 44 found in the different processing
clusters, and uses multiple memory controllers which have
the same ability to maintain temporary mappings for a super-
page coalescing procedure. Pointers in the mapping tables of
the memory controllers can straddle memory controller
boundaries, that is, they can map to physical locations any-
where in the total amount of available memory, not just to
those physical locations controlled by that controller in its
corresponding local memory array. In this manner, a virtual
page can easily migrate from an old physical location in one
processing cluster to a new physical location in a second
processing cluster, for example, to bring a data set closer to a
processing cluster that is using the data.

For data processing systems such as computer system 52
that utilize caches, page migration/coalescing must take into

US 8,417,913 B2

7

consideration any current (valid) cache entries whose page
mappings change. One way to address this concern is by
simply flushing all cache blocks in the old page mappings
(i.e., writing the cached values back to system memory and
invalidating the cache lines). Flushing of any affected cache
lines can be performed by the operating system using stan-
dard cache instructions, but this approach introduces addi-
tional delays. An alternative approach is to provide a cache in
which the address tag for an affected data line can be modified
without having to move the data to or from main memory.
FIG. 5illustrates one embodiment of such a cache memory 70
constructed in accordance with the present invention which
updates address tag information based on newly mapped
virtual-to-physical memory locations.

Cache 70 includes a cache controller 72, a data array 74 and
atag array 76 whose entries correspond respectively with the
values in data array 74. Cache controller 72 receives cache
instructions and accesses data array 74 and tag array 76 in a
known manner to carry out read and write operations. Cache
controller 72 also receives page coalescing/migration instruc-
tions from the OS, which can be broadcast to all caches in the
computer system. Cache controller 72 passes on the page
mapping information to a state machine 78. State machine 78
examines each of the entries in tag array 76 to determine if any
current cache lines are aftfected by the remapping. If any valid
tag is within a remapped address range, its coherency state is
additionally examined to determine the appropriate action.
For a “clean” coherency state (meaning that the correspond-
ing cached value is valid and is stored elsewhere in the
memory hierarchy), the cache tag can be rewritten based on
the new mapping in order to incur no further latency when
accessed through the new mapping. For a “dirty” coherency
state (meaning that the corresponding cached value is valid
but is not stored elsewhere in the memory hierarchy), the tag
can be rewritten based on the new mapping. The dirty coher-
ency state is maintained for that line, so this tag switch advan-
tageously permits the dirty data to stay in the cache. In either
case (clean or dirty) there is no need to write any data to or
read any data from system memory, and all remaining valid
tags are guaranteed to be consistent with the new mapping.

For set associative caches, consideration must also be
given to the appropriate congruence class for any dirty cache
line whose tag is modified. State machine 78 determines the
congruence class of the modified tag and, if different from the
congruence class of the old tag, instructs cache controller 72
to re-locate the affected cache line. Cache controller 72
handles this instruction similar to a standard write instruction,
searching for an available cache line (clean or invalid) in the
appropriate set and rewriting the data, as indicated at 80. The
old cache line is then invalidated. If no cache line in the new
set is available, the default eviction process (e.g., least
recently used) is preferably employed to make a line available
and the data is rewritten to that line. Alternatively, if no clean
or invalid entry is found for the new set, cache controller 72
could be programmed to flush the affected cache line to a
lower level of the memory hierarchy.

The depicted embodiment of cache 70 locally controls the
tag remapping using state machine 78, but the procedure
could instead be remotely controlled by its associated proces-
sor core.

The present invention may be further understood with ref-
erence to the flow chart of FIG. 6. The process begins when
the OS decides that is it desirable to coalesce a set of pages
into a larger superpage (90). In this regard, those skilled in the
art will appreciate that the term “superpage” is not to be
construed in a limiting sense, i.e., with regard either to the
actual size of the page or to the number of smaller pages that

10

15

20

25

30

35

40

45

50

55

60

65

8

are coalesced. The OS allocates the pages (92) by setting
aside a contiguous set of physical pages to map the new
superpage, and informs the memory controller of the new
mapping (94). The memory controller creates the temporary
mapping table and the OS immediately begins using the new
mapping (96). No entry is needed for any identical mappings,
i.e., when the superpage coalescing results in a page copy
instruction whose new physical address is the same as the old
address. For coherency, the OS stalls write operations at the
processor TLBs using protection bits (98) while the caches
are updated (100). The TLB entries are thereafter changed to
reflect the larger superpage (102). The memory controller
copies the pages while the new mappings are being used
(104). While the copying proceeds, read operations to the new
superpage can be handled by presenting the operations to the
memory controller using the new page mapping, and the
memory controller will divert the read to the old page. A write
operation directed to a memory location that is currently
being copied is written to both the old and new pages. A write
operation directed to a memory location that is in the memory
controller mapping but is not yet being copied is written only
to the old page. As pages are copied, the memory controller
gradually removes the temporary mappings, until all of the
page copying is complete (106). The invention permits the
creation of superpages made up from more (super)pages than
there are slots in table 46 of memory controller 42 in FIG. 3.
This is achieved by using an iterative process to create the
superpages.

Although the invention has been described with reference
to specific embodiments, this description is not meant to be
construed in a limiting sense. Various modifications of the
disclosed embodiments, as well as alternative embodiments
of the invention, will become apparent to persons skilled in
the art upon reference to the description of the invention. It is
therefore contemplated that such modifications can be made
without departing from the spirit or scope of the present
invention as defined in the appended claims.

What is claimed is:
1. A method of assigning virtual memory to physical
memory in a data processing system, comprising the steps of:
allocating a set of physical memory pages of the data
processing system for a new virtual superpage mapping;

instructing a memory controller of the data processing
system to move a plurality of virtual memory pages
corresponding to an old page mapping to the set of
physical memory pages corresponding to the new virtual
superpage mapping; and

accessing at least one of the virtual memory pages using the

new virtual superpage mapping while the memory con-
troller is copying old physical memory pages to new
physical memory pages.

2. The method of claim 1 wherein said allocating step
allocates a contiguous set of physical memory pages.

3. The method of claim 1 wherein said accessing step
includes the step of directing a read operation for an address
of'the new page mapping which is currently being copied to a
corresponding address of an old page mapping.

4. The method of claim 1 wherein said accessing step
includes the step of directing a write operation for an address
of the new page mapping which is currently being copied to
both the address of the new page mapping and a correspond-
ing address of an old page mapping.

5. The method of claim 1 wherein said accessing step
includes the step of directing a write operation for an address
of'the new page mapping which has not yet been copied to a
corresponding address of an old page mapping.

US 8,417,913 B2

9

6. The method of claim 1, further comprising the step of
updating an entry in a cache memory of the data processing
system which corresponds to a memory location in the virtual
memory page, by modifying an address tag of the cache entry
according to the new page mapping.

7. A memory controller comprising:

an input for receiving remapping instructions for a virtual
superpage;

a mapping table which temporarily stores entries of old
page addresses and corresponding new page addresses
associated with the page remapping instructions; and

a memory access device which directs the copying of
memory pages from the old page addresses to the new
page addresses while handling access operations which
use the new page addresses, and releases the entries in
said mapping table as copying for each entry is com-
pleted.

8. The memory controller of claim 7 wherein said mapping
table has 32 slots for receiving corresponding pairs of the old
page addresses and new page addresses.

9. The memory controller of claim 7 wherein said memory
access device directs a read operation for a new page address
which is currently being copied to a corresponding old page
address.

10. The memory controller of claim 7 wherein said
memory access device directs a write operation for a new
page address which is currently being copied to both the new
page address and a corresponding old page address.

11. The memory controller of claim 7 wherein said
memory access device directs a write operation for a new
page address which has not yet been copied to a correspond-
ing old page address.

12. The memory controller of claim 7 wherein said
memory access device includes a state engine which sequen-
tially reads the paired old and new pages addresses in said
mapping table.

13. The memory controller of claim 12 wherein said
memory access device further includes a direct memory
access (DMA) engine controlled by said state engine which
carries out actual copying of the memory pages.

14. A computer system comprising:

a processing unit;

an interconnect bus connected to said processing unit;

a memory array; and

a memory controller connected to said interconnect bus
and said memory array, wherein said memory controller

10

15

25

30

35

40

45

10

copies memory pages from old page addresses to new
page addresses according to a new virtual superpage
mapping while handling access operations which use the
new page addresses and while said processing unit car-
ries out program instructions using the new page
addresses.

15. The computer system of claim 14 wherein:

said processing unit includes a processor core having a
translation lookaside buffer (TLB) whose entries keep
track of current virtual-to-physical memory address
assignments; and

said TLB entries are updated for the new page addresses
prior to completion of copying of the memory pages by
the memory controller.

16. The computer system of claim 14 wherein:

said processing unit has a processor core and an associated
cache; and

said cache modifies an address tag of a cache entry which
corresponds to a memory location in the new page
addresses.

17. The computer system of claim 16 wherein said cache
modifies the address tag of the cache entry in response to a
determination that the cache entry contains a valid value
which is not present elsewhere in the system.

18. The computer system of claim 16 wherein said cache
further relocates the cache entry based on a changed congru-
ence class for the modified address tag.

19. The computer system of claim 14 wherein said memory
controller includes:

a mapping table which temporarily stores entries of old
page addresses and corresponding new page addresses;
and

a memory access device which directs the copying of the
memory pages from the old page addresses to the new
page addresses and releases the entries in said mapping
table as copying for each entry is completed.

20. The computer system of claim 14 wherein said process-
ing unit, said interconnect bus, said memory array and said
memory controller are all part of a first processing cluster, and
further comprising a network interface which allows said first
processing cluster to communicate with a second processing
cluster, said memory controller having at least one pointer for
a new page address which maps to a physical memory loca-
tion in said second processing cluster.

#* #* #* #* #*

