(12)

United States Patent
Brock et al.

US006421775B1

10y Patent No.: US 6,421,775 B1

(54

(75)

(73)

*)

@D
(22

G
(52)

(58)

(56)

INTERCONNECTED PROCESSING NODES
CONFIGURABLE AS AT LEAST ONE
NON-UNIFORM MEMORY ACCESS (NUMA)
DATA PROCESSING SYSTEM

Inventors: Bishop Chapman Brock; David Brian
Glasco; James Lyle Peterson;
Ramakrishnan Rajamony; Ronald
Lynn Rockhold, all of Austin, TX (US)

Assignee: International Business Machines
Corporation, Armonk, NY (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Appl. No.: 09/335,301
Filed: Jun. 17, 1999
Int. CL7 ..o GO6F 15/177;, GOGF 9/00;
GO6F 9/24; GO6F 15/00
US.Cl o, 713/1; 713/2; 712/28;
709/100
Field of Search .......................... 713/1, 2; 712/28,;

711/120, 143, 148, 153; 709/100

References Cited
U.S. PATENT DOCUMENTS

4925311 A * 5/1990 Neches et al. .....
5,561,768 A * 10/1996 Smith ................

709/100
712/13

5) Date of Patent: Jul. 16, 2002
6,148,361 A * 11/2000 Carpenter et al. .......... 710/260
6,243,794 B1 * 6/2001 Casamatta ........... ... 711/153
6,247,109 B1 * 6/2001 Kleinsorge et al. ........... 712/13
6,275,907 B1 * 8/2001 Baumgartner et al. ...... 711/143
6,347,372 B1 * 2/2002 Takashima et al. ............ 713/2

FOREIGN PATENT DOCUMENTS

EP 0780769 Al 6/1997
EP 0817076 Al 1/1998

OTHER PUBLICATIONS

David Parry, Scalability in Computing for Today and Tomor-
row, ARVLSI 1997.

RD 416099, Derwent Abstract for Research Disclosure,
Dec. 1998.

Australian Patent Office Written Opinion, Dec. 5, 2001.

* cited by examiner

Primary Examiner—Jeffrey Gaffin

Assistant Examiner—Chu Cao

(74) Attorney, Agent, or Firm—Casimer K. Salys;
Bracewell & Patterson, L.L.P.

(7) ABSTRACT

A data processing system includes a plurality of processing
nodes that each contain at least one processor and data
storage. The plurality of processing nodes are coupled
together by a system interconnect. The data processing
system further includes a configuration utility residing in
data storage within at least one of the plurality of processing
nodes. The configuration utility selectively configures the
plurality of processing nodes into either a single non-

5,710,907 A : 1/1998 Hagersten et al. . 711/148 uniform memory access (NUMA) system or into multiple
5,867,702 A 2/1999 Lee .ooovevviiiiiiiiiiiniiniinnnns 713/1 independent data processing systems through communica-
3,887,146 A 3/1999  Baxter et al. tion via the system interconnect
5,926,829 A * 7/1999 Hagersten et al. .......... 711/120 Y :
5,938,765 A * 8/1999 Dove et al. ....ccceueeeeeeenen. 713/1
6,108,764 A * 8/2000 Baumgartner et al. ........ 712/28 19 Claims, 5 Drawing Sheets
~°
1 4 e 0 o
CACHE
HIERARCHY
LOCAL
8 (NTERCONNECT
< ! ! i I
NODE 20 HOST 38 ARBITER 24 28 MEMORY 17
CONTROLLER BRIDGE MEZZANINE CONTROLLER
70 BUS BRIDGE
42
TO NODE SYSTEM 18
INTERCONNECT 44 MEMORY
SERVICE
< ™ PROCESSOR
50 46 48 BUS
i% fae o

(o] (o] [m] <
I/O STORAGE
DEVICES DEVICES

MEZZANINE
>




US 6,421,775 Bl

Sheet 1 of 5

Jul. 16, 2002

U.S. Patent

I hup

133INNODJHILNI
1dON

3AON 3AON
ONISSIO0Nd HNISSIO0Hd
— nol | |—
P8 __ 28
} 9¢ I
Y 0 y
<
! i
12
Y Y
3QON 3AON
ONISSI00Hd DNISSII0Hd
q8 eg




US 6,421,775 Bl

Sheet 2 of 5

Jul. 16, 2002

U.S. Patent

S30IAQ S30IA3d
bel mo<w_9m J,\_ N ¢
SNE ? ' | v AvHd ds
ININVZZIN ST I , : .
" Snd w.V: oU: omJ:
HOSS300Hd < , ™
NS !
— AHOW3W A LOINNODYILNI
81 W3LSAS ‘ P 3QON 0L
i ey 1 “
1 IDaIE Sne 077/} Y
—_ H3TIOHINOD _ NNVZZN | [ o e — 39qm8 —_ Y3TIOHINOD
ZL  AHOW3IW 9¢ ¥ e 8¢ LSOH 0¢  30ON
f A A A A
Y A y
< 7 >
LIINNODHILNI ﬁ o P
V01 Y
AHOUVEIIH AHOUVHIIH
IHOV) IHIV) :
J F.v A N mﬁ.&
y) 0 ° o0 pl '
W00 R
HOSS300Hd A , | HOSSI00Hd A , |
wol e01l
oS



U.S. Patent Jul. 16, 2002 Sheet 3 of 5 US 6,421,775 B1

¢ BEIIN }IB 0

AT EACH PROCESSING NODE,
EXECUTE POST AND BIOS

'

OBTAIN INPUT SPECIFYING
GROUPING OF PROCESSING
NODES INTO DATA

PROCESSING SUBSYSTEM(S)

l

INDEPENDENTLY
CONFIGURE EACH DATA

PROCESSING SUBSYSTEM |

82

84

185

( CONTINUE }IBB

Fig. 34



U.S. Patent

qOO

Jul. 16, 2002 Sheet 4 of 5

US 6,421,775 Bl

( mGN )

DETERMINE MASTER PROCESSING NODE OF
THE DATA PROCESSING SUBSYSTEM

Fig.
3B

Fig.
3C

Y

SEND MESSAGE TO CLIENT PROCESSING

NODE, IF ANY, ASSERTING MASTERSHIP

Laut

, 106

RESPONSE RECEIVED
FROM CLIENT ?

ADDITIONAL CLIENT(S} ?
NO

_—

Y

SEND MESSAGE(S) TO CLIENT PROCESSING
NODE, IF ANY, REQUESTING RESQURCE LIST

112

RESPONSE(S) RECEIVED
FROM CLIENT ?

MERGE REPORTED RESOURCES INTOQ
SUBSYSTEM RESOURCE LIST

COMPUTE COMPLETE SUBSYSTEM
CONFIGURATION AND HOW TO REMAP CLIENT
RESOURCES

fo

-

Y

SEND MESSAGE(S) TO CLIENT PROCESSING
NODE SPECIFYING HOW IT SHOULD REMAP
ITS RESOURCES

y 122

REMAP RESOURCES AT MASTER PROCESSING
NODE

J'126

Y

BOOT 0S

130




U.S. Patent Jul. 16, 2002 Sheet 5 of 5 US 6,421,775 B1

140
C’

DETERMINE MASTER PROCESSING NODE OF
( BEGIN ) - THE DATA PROCESSING SUBSYSTEM

144 -

1142

MESSAGE RECEIVED
FROM MASTER ?

TRANSMIT REPLY ACKNOWLEDGING -f1 46

THE MASTER PROCESSING NODE

Y 148

MESSAGE
RECEIVED FROM MASTER
PROCESSING NODE ?

0y |
150
TRANSMIT A MESSAGE TO MASTER
PROCESSING NODE INCLUDING RESOURCE LIST

Fig. 3C

Y 152

MESSAGE
RECEIVED FROM MASTER
PROCESSING NODE ?

F~
S 154
SEND RESPONSE ACKNOWLEDGING
| REQUEST TO REMAP RESQURCES
REMAP RESOURCES AT CLIENT PROCESSING "I1 56
NODE
HALT PROCESSOR 158

UNTIL OS CONTACTS PROCESSORS
FOR SCHEDULING




US 6,421,775 B1

1

INTERCONNECTED PROCESSING NODES
CONFIGURABLE AS AT LEAST ONE
NON-UNIFORM MEMORY ACCESS (NUMA)
DATA PROCESSING SYSTEM

BACKGROUND OF THE INVENTION

1. Technical Field

The present invention relates in general to data processing
and, in particular, to a non-uniform memory access (NUMA)
data processing system. Still more particularly, the present
invention relates to a collection of interconnected processing
nodes that may be configured as one or more data processing
systems including at least one NUMA data processing
system.

2. Description of the Related Art

It is well-known in the computer arts that greater com-
puter system performance can be achieved by harnessing the
processing power of multiple individual processors in tan-
dem. Multi-processor (MP) computer systems can be
designed with a number of different topologies, of which
various ones may be better suited for particular applications
depending upon the performance requirements and software
environment of each application. One of the common MP
computer topologies is a symmetric multi-processor (SMP)
configuration in which multiple processors share common
resources, such as a system memory and input/output (I/0)
subsystem, which are typically coupled to a shared system
interconnect. Such computer systems are said to be sym-
metric because all processors in an SMP computer system
ideally have the same access latency with respect to data
stored in the shared system memory.

Although SMP computer systems permit the use of rela-
tively simple inter-processor communication and data shar-
ing methodologies, SMP computer systems have limited
scalability. In other words, while performance of an SMP s
computer system can generally be expected to improve with
scale (i.e., with the addition of more processors), inherent
bus, memory, and input/output (I/O) bandwidth limitations
prevent significant advantage from being obtained from
scaling a SMP beyond an implementation-dependent size at
which the utilization of these shared resources is optimized.
Thus, the SMP topology itself suffers to a certain extent from
bandwidth limitations, especially at the system memory, as
the system scale increases. SMP computer systems also do
not scale well from the standpoint of manufacturing effi-
ciency. For example, although some components can be
optimized for use in both uniprocessor and small-scale SMP
computer systems, such components are often inefficient for
use in large-scale SMPs. Conversely, components designed
for use in large-scale SMPs may be impractical for use in
smaller systems from a cost standpoint.

As aresult, there has recently been increased interest in an
MP computer system topology known as non-uniform
memory access (NUMA), which addresses many of the
limitations of SMP computer systems at the expense of some
additional complexity. A typical NUMA computer system
includes a number of interconnected nodes that each include
one or more processors and a local “system” memory. Such
computer systems are said to have a non-uniform memory
access because each processor has lower access latency with
respect to data stored in the system memory at its local node
than with respect to data stored in the system memory at a
remote node. NUMA systems can be further classified as
either non-coherent or cache coherent, depending upon
whether or not data coherency is maintained between caches
in different nodes. The complexity of cache coherent NUMA

10

15

20

25

30

35

40

45

50

55

60

65

2

(CC-NUMA) systems is attributable in large measure to the
additional communication required for hardware to maintain
data coherency not only between the various levels of cache
memory and system memory within each node but also
between cache and system memories in different nodes.
NUMA computer systems do, however, address the scal-
ability limitations of conventional SMP computer systems
since each node within a NUMA computer system can be
implemented as a smaller uniprocessor or SMP system.
Thus, the shared components within each node can be
optimized for use by one or a few processors, while the
overall system benefits from the availability of larger scale
parallelism while maintaining relatively low latency.

The present invention recognizes that the expense of a
large-scale NUMA data processing system is difficult to
justify in certain computing environments, such as those
having varying workloads. That is, some computing envi-
ronments infrequently require the processing resources of a
large-scale NUMA data processing system to execute a
single application and frequently require multiple smaller
data processing systems to run different operating systems
and/or different applications. Prior to the present invention,
the varying workloads of such computing environments
could be accommodated only by multiple computer systems
of differing scale or by physically reconfiguring a NUMA
system by connecting and disconnecting nodes as needed.

SUMMARY OF THE INVENTION

To address the above-described shortcomings in the art,
the present invention provides a data processing system
including a plurality of processing nodes that each contain at
least one processor and data storage. The plurality of pro-
cessing nodes are coupled together by a system interconnect.
The data processing system further includes a configuration
utility residing in data storage within at least one of the
plurality of processing nodes. The configuration utility
selectively configures the plurality of processing nodes into
either a single non-uniform memory access (NUMA) system
or into multiple independent data processing systems
through communication via the system interconnect.

All objects, features, and advantages of the present inven-
tion will become apparent in the following detailed written
description.

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features believed characteristic of the invention
are set forth in the appended claims. The invention itself
however, as well as a preferred mode of use, further objects
and advantages thereof, will best be understood by reference
to the following detailed description of an illustrative
embodiment when read in conjunction with the accompa-
nying drawings, wherein:

FIG. 1 depicts an illustrative embodiment of a multiple-
node data processing system with which the present inven-
tion may advantageously be utilized;

FIG. 2 is a more detailed block diagram of a processing
node within the data processing system shown in FIG. 1;

FIG. 3A is a high level logical flowchart illustrating a
method of selectively partitioning and configuring the data
processing system of FIG. 1 into one or more data process-
ing subsystems;

FIG. 3B is a high level logical flowchart of a method by
which a master processing node configures a data processing
subsystem in accordance with an embodiment of the present
invention; and



US 6,421,775 B1

3

FIG. 3C is a high level logical flowchart of a method by
which a client processing node is configured in accordance
with an embodiment of the present invention.

DETAILED DESCRIPTION OF ILLUSTRATIVE
EMBODIMENT
System Overview

With reference now to the figures and in particular with
reference to FIG. 1, there is depicted an illustrative embodi-
ment of a data processing system in accordance with the
present invention. The depicted embodiment can be realized,
for example, as a workstation, server, or mainframe com-
puter. As illustrated, data processing system 6 includes a
number of processing nodes 8 (in this case four), which are
interconnected by a node interconnect 22. As discussed
further below, inter-node data coherence is maintained by an
interconnect coherence unit (ICU) 36.

Referring now to FIG. 2, processing nodes 8a-8d may
each include one or more processors 10a—10m, a local
interconnect 16, and a system memory 18 that is accessed
via a memory controller 17. Processors 10a—10m are pref-
erably (but not necessarily) identical. In addition to the
registers, instruction sequencing logic and execution units
utilized to execute program instructions, which are generally
designated as processor core 12, each of processors
10a—10m also includes an on-chip cache hierarchy 14 that is
utilized to stage data to the associated processor core 12
from system memories 18. Each cache hierarchy 14 may
include, for example, a level one (L.1) cache and a level two
(L2) cache having storage capacities of between 8-32 kilo-
bytes (kB) and 1-16 megabytes (MB), respectively.

Each of processing nodes 8a—8d further includes a respec-
tive node controller 20 coupled between local interconnect
16 and node interconnect 22. Each node controller 20 serves
as a local agent for remote processing nodes 8 by performing
at least two functions. First, each node controller 20 snoops
the associated local interconnect 16 and facilitates the trans-
mission of local communication transactions to remote
processing nodes 8. Second, each node controller 20 snoops
communication transactions on node interconnect 22 and
masters relevant communication transactions (e.g., read
requests) on the associated local interconnect 16. Commu-
nication on each local interconnect 16 is controlled by an
arbiter 24. Arbiter 24 regulates access to local interconnect
16 based on bus request signals generated by processors 10
and compiles coherency responses for snooped communi-
cation transactions on local interconnect 16.

Local interconnect 16 is coupled, via mezzanine bus
bridge 26, to a mezzanine bus 30, which may be imple-
mented as a Peripheral Component Interconnect (PCI) local
bus, for example. Mezzanine bus bridge 26 provides both a
low latency path through which processors 10 may directly
access devices among I/O devices 32 and storage devices 34
that are mapped to bus memory and/or I/O address spaces
and a high bandwidth path through which I/O devices 32 and
storage devices 34 may access system memory 18. I/O
devices 32 may include, for example, a display device, a
keyboard., a graphical pointer, and serial and parallel ports
for connection to external networks or attached devices.
Storage devices 34, on the other hand, may include optical
or magnetic disks that provide non-volatile storage for
operating system and application software.

Local interconnect 16 is further coupled via host bridge
38 to a memory bus 40 and a service processor bus 44.
Memory bus 40 is coupled to non-volatile random access
memory (NVRAM) 42, which stores configuration and other
critical data of processing node 8. Service processor bus 44
supports a service processor 50, which serves as the boot

10

15

20

25

30

35

40

45

50

55

60

65

4

processor for processing node 8. Boot code for processing
node 8, which typically includes Power-On Self-Test
(POST), Basic Input/Output System (BIOS), and operating
system loader code, is stored in flash memory 48. Following
boot, service processor 50 serves as a system monitor for the
software and hardware of processing node 8 by executing
system monitoring software out of service processor
dynamic random access memory (SP DRAM) 46.

System Configurability

In a preferred embodiment of the present invention, the
BIOS boot code stored in flash memory 48 includes a
configuration utility that permits data processing system 6 to
be selectively partitioned into one or more independently
operable subsystems. As discussed in detail below, data
processing system 6 may advantageously be configured by
the configuration software as a single NUMA data process-
ing system, as multiple NUMA data processing subsystems,
or any other combination of single and/or multi-node (i.e.,
NUMA) data processing subsystems in response to the
anticipated characteristics of the processing load. For
example, if a large amount of processing power is required
to execute a single application, it is desirable to configure
data processing system 6 as a single NUMA computer
system, thus maximizing the processing power available to
execute the application. If, on the other hand, execution of
multiple diverse applications and/or multiple diverse oper-
ating systems is required, it may be desirable to configure
data processing system 6 as multiple NUMA data processing
subsystems and/or multiple single node subsystems.

When data processing system 6 is configured as multiple
data processing subsystems, the data processing subsystems
contain disjoint and possibly differently-sized sets of pro-
cessing nodes 8. Each of the multiple data processing
subsystems can be independently configured, run, shut
down, rebooted, and re-partitioned without interfering with
the operation of the other data processing subsystems.
Importantly, reconfiguration of data processing system 6
does not require the attachment. or detachment of any
processing nodes 8 to or from node interconnect 22.
Memory Coherency

Because data stored within a system memory 18 can be
requested, accessed, and modified by any processor 10
within a given data processing subsystem, a cache coherence
protocol is implemented to maintain coherence both
between caches in the same processing node and between
caches in different processing nodes of the same data pro-
cessing subsystem. The cache coherence protocol that is
implemented is implementation-dependent; however, in a
preferred embodiment, cache hierarchies 14 and arbiters 24
implement the conventional Modified, Exclusive, Shared,
Invalid (MESI) protocol, or a variant thereof. Inter-node
cache coherency is preferably maintained through a
directory-based mechanism centralized in interconnect
coherence unit (ICU) 36 connected to node interconnect 22,
but could alternatively be distributed within directories
maintained by node controllers 20. This directory-based
coherence mechanism preferably recognizes the M, S and I
states and considers the E state to be merged into the M state
for correctness. That is, data held exclusively by a remote
cache is assumed to be modified, whether or not the data has
actually been modified.

Interconnect Architecture

Local interconnects 16 and node interconnect 22 can each
be implemented with a variety of interconnect architectures.
However, in a preferred embodiment, at least node inter-
connect 22 is implemented as a switch-based interconnect
governed by the 6xx communication protocol developed by



US 6,421,775 B1

5

IBM Corporation of Armonk, N.Y. This point-to-point com-
munication methodology permits node interconnect 22 to
route address and data packets from a source processing
node 8 to only the processing nodes 8 within the same data
processing subsystem.

Local interconnects 16 and node interconnect 22 permit
split transactions, meaning that no fixed timing relationship
exists between the address and data tenures comprising a
communication transaction and that data packets can be
ordered differently than the associated address packets. The
utilization of local interconnects 16 and node interconnect
22 is also preferably enhanced by pipelining communication
transactions, which permits a subsequent communication
transaction to be sourced prior to the master of a previous
communication transaction receiving coherency responses
from each recipient.

Configuration Utility

Referring now to FIG. 3A there is depicted a high level
logical flowchart illustrating a process for partitioning and
configuring a multi-node data processing system such as
data processing system 6 into one or more data processing
subsystems in accordance with the present invention. As
illustrated, the process begins at block 80 in response to all
of processing nodes 8a-8d being powered on and then
proceeds to block 82, which illustrates service processor 50
at each processing node 8 executing POST code from flash
memory 48 to initialize the local hardware to a known,
stable state. Following POST, each service processor 50
executes conventional BIOS routines to interface key
peripherals (e.g., a keyboard and display) and initialize
interrupt handling. Then, as illustrated beginning with block
84, a processor (i.e., service processor 50 and/or a processor
10) at each processing node 8 begins execution of the BIOS
configuration utility mentioned above by obtaining input
specifying a number of independent data processing sub-
systems into which data processing system 6 is to be
partitioned and the particular processing nodes 8 belonging
to each data processing subsystem. The input illustrated at
block 84 can be obtained from any of a number of sources,
for example, a file residing on a data storage medium or
operator input at one or more processing nodes 8.

In a-preferred embodiment of the present invention, the
input illustrated at block 84 is obtained from an operator at
one or more processing nodes 8 in response to a series of
menu screens displayed at such processing nodes 8. The
input is then utilized to construct a partitioning mask at each
processing node 8 indicative of any other processing nodes
8 with which the processing node 8 is grouped to form a data
processing subsystem. For example, if each of the four
processing nodes 8 within data processing system 6 is
assigned a bit in a four-bit mask, a NUMA configuration
including all processing nodes can be represented by 1111,
two 2-node NUMA subsystems can be represented by 0011
and 1100 or 1010 and 0101, and a 2-node NUMA subsystem
and two single node subsystems can be represented by 0011,
1000 and 0100 (and other similar node combinations). If
input indicating a desired partitioning of data processing
system 6 is provided at less than all of processing nodes 8,
the appropriate-mask is transmitted to the other processing
nodes 8 via node interconnect 22. In this manner, each
processing node 8 has a record of each other processing node
8, if any, with which it is to be grouped.

Following block 84, the process proceeds to block 86,
which depicts each data processing subsystem of data pro-
cessing system 6 independently completing its
configuration, as discussed below in detail with reference to
FIGS. 3B and 3C. Processing then continues at block 88.

10

15

20

25

30

35

40

45

50

55

60

65

6

Referring now to FIGS. 3B and 3C, high level logical
flowcharts are given that respectively illustrate processes by
which master and client processing nodes can establish the
configuration of a data processing subsystem of data pro-
cessing system 6 as depicted at block 86 of FIG. 3A. The
illustrated processes, which are described together to detail
the communication therebetween, are preferably imple-
mented as a portion of the BIOS configuration utility dis-
cussed above.

The process depicted in FIG. 3B, which represents the
operations of a master processing node 8, and the process
depicted in FIG. 3C, which represents the operations of a
client processing node 8 (if any), begin in parallel at blocks
100 and 140, respectively, following block 84 of FIG. 3A.
As shown at blocks 102 and 142, respectively, each pro-
cessing node 8 in the data processing subsystem determines
whether it is the master processing node 8 responsible for
completing the configuration of the data processing sub-
system. The master processing node 8 of a data processing
subsystem can be determined by a number of well-known
mechanisms, including voting and race, but in a preferred
embodiment the master processing node 8 is set by default
as the processing node 8 in the data processing subsystem
having the lowest-order bit among those set in the partition-
ing mask. A master processor (i.e., either service processor
50 or a designated processor 10) in the processing node 8
determined to be the master then manages the configuration
of its data processing subsystem as detailed in blocks
104-130 of FIG. 3B.

Referring now to block 104, the master processor issues
a message on its local interconnect 16 targeting a client
processing node 8, if any, belonging to the data processing
subsystem. The message, represented by arrow A, asserts
that its processing node 8 is the master. The message is
snooped by the local node controller 20 and forwarded to the
indicated client processing node 8 via node interconnect 22.
As shown at 30 blocks 144 and 146, respectively, the client
processing node 8 waits until this message is received from
the master, and in response to receipt of the message,
transmits an acknowledgement message, represented by
arrow B, to the master processing node 8. As depicted at
blocks 106 and 108 of FIG. 3B, the master waits until the
acknowledgement message is received from the client pro-
cessing node 8, and once the acknowledgement has been
received, returns to block 104 if the partitioning mask
indicates that an additional client processing node 8 has not
yet been contacted with the master assertion message. This
master assertion-acknowledgement protocol (which could
alternatively be performed with multiple client processing
nodes 8 in parallel) serves hot only to guarantee that all
processing nodes 8 within a data processing subsystem are
in agreement as to which processing node 8 is the master, but
also advantageously synchronizes the various processing
nodes 8 in a subsystem, which may have been powered on
at different times and which may boot at different rates.

Once master processing node 8 has received acknowl-
edgements of its mastership from all of the client processing
nodes 8 (if any) in its data processing subsystem, as indi-
cated by the process in FIG. 3B proceeding from block 108
to block 110, the master processing node 8 requests con-
figuration information (e.g., a resource list) from a client
processing node 8 (if any). This request for configuration
information, which may include one or more messages to a
client, is represented by arrow C. As illustrated at blocks 148
and 150 of FIG. 3C, the client processing node 8 awaits the
resource list request, and in response to receipt of the
resource list request, responds by transmitting master pro-



US 6,421,775 B1

7

cessing node 8 one or more messages specifying its I/O
resources, the amount of system memory 18 present, the
number of processors 10 it contains, and other configuration
information. This configuration information response is rep-
resented by arrow D. Blocks 112 and 114 of FIG. 3B
illustrate the master processing node 8 awaiting the response
from the client processing node 8, and following receipt of
the response, adding the specified resources to a subsystem
resource list. As shown at block 116, master processing node
8 performs blocks 110114 for each client processing node
8 specified in the partitioning mask.

Once a resource list has been obtained by the master from
each client (if any), as indicated by the process in FIG. 3B
proceeding from block 116 to block 118, the master proces-
sor at the master processing node 8 determines an overall
configuration of the subsystem and computes how to remap
the resources of each client processing node 8. Next, at block
120, the master processor at the master processing node 8
transmits to a client processing node 8 (if any) one or more
messages (represented by arrow E) specifying how that
client processing node 8 should remap its resources. For
example, the master processor may specify to the memory
controller 17 of the client processing node 8 the range of
physical addresses with which the storage locations in the
attached system memory 18 are associated. In addition, the
master processor may specify the memory-mapped
addresses of I/O devices 32 in client processing node 8.
Depending upon the implementation, the master processor
can also specify the processor ID for each processor 10 in
the client processing node 8.

In a preferred embodiment, all of processors 10 in each
data processing subsystem share a single physical memory
space, meaning that each physical address is associated with
only a single location in one of system memories 18. Thus,
the overall contents of a data processing subsystem’s system
memory, which can generally be accessed by any processor
10 in the data processing subsystem, can be viewed as
partitioned between system memories 18 within the pro-
cessing nodes 8 comprising the data processing subsystem.
For example, in an illustrative embodiment in which each
processing node 8 includes, 1 GB of system memory 18 and
data processing system 6 is configured as two NUMA data
processing subsystems, each NUMA data processing sub-
system would have a 2 gigabyte (GB) physical address
space.

As shown at blocks 152 and 154 of FIG. 3C, the client
processing node 8 awaits the remap request from the master
processing node 8, and in response to receipt of the remap
request, responds with an acknowledgement of the remap
request, represented by arrow F. As illustrated at blocks
122-124, the master processing node 8 awaits this remap-
request acknowledgement, and in response to receipt of the
remap request acknowledgement, repeats blocks 120-122
for each other client processing node 8 indicated in the
partitioning mask.

Following block 124 of FIG. 3B and block 154 of FIG.
3C, the master processing node 8 and each client processing
node 8 remaps its respective local resources in accordance
with the configuration determined by the master processing
node 8, as depicted at blocks 126 and 156. As indicated at
block 158 of FIG. 3C, each client processing node 8 then
halts processing by processors 10 until the operating system
(0S) of the data processing subsystem schedules work to
processors 10. Meanwhile, as shown at block 128 of FIG.
3B, master processing node 8 boots the operating system for
its data processing subsystem from one of storage devices
34, for example. As mentioned above, if multiple data

10

15

20

25

30

35

40

45

50

55

60

65

8

processing subsystems are formed from the processing
nodes 8 of data processing system 6, the multiple data
processing subsystems may run different operating systems,
such as Windows NT and SCO (Santa Cruz Operation).
UNIX. Thereafter, processing by the master processing node
8 continues at block 130.

As has been described, the present invention provides a
method for configuring a collection of interconnected pro-
cessing nodes into either a single NUMA data processing
system or into a selected number of independently operable
data processing subsystems. In accordance with the present
invention, the partitioning of the processing nodes into
multiple data processing subsystems is accomplished with-
out connecting or disconnecting any of the processing
nodes.

While the invention has been particularly shown and
described with reference to a preferred embodiment, it will
be understood by those skilled in the art that various changes
in form and detail may be made therein without departing
from the spirit and scope of the invention. For example,
although aspects of the present invention have been
described with respect to a computer system executing
software that directs the method of the present invention, it
should be understood that the present invention may alter-
natively be implemented as a computer program product for
use with a computer system. Programs defining the func-
tions of the present invention can be delivered to a computer
system via a variety of signal-bearing media, which include,
without limitation, non-rewritable storage media (e.g.,
CD-ROM), writable storage media (e.g., a floppy diskette or
hard disk drive), and communication media, such as com-
puter and telephone networks. It should be understood,
therefore, that such signal-bearing media, when carrying or
encoding computer readable instructions that direct the
method functions of the present invention, represent alter-
native embodiments of the present invention.

What is claimed is:

1. A data processing system, comprising:

a system interconnect;

a plurality of processing nodes coupled to said system
interconnect, each of said plurality of processing nodes
containing at least one processor and data storage; and

boot code residing in a system memory in at least one of
said plurality of processing nodes, wherein said boot
code includes a configuration utility that, upon system
reset, selectively configures said plurality of processing
nodes into one of a single non-uniform memory access
(NUMA) system and multiple independent data pro-
cessing systems through communication via said sys-
tem interconnect, and wherein said boot code boots an
independent operating system in each configured data
processing system, such that said boot code boots
multiple independent operating systems when said con-
figuration utility configures said plurality of processing
nodes as a plurality of data processing systems.

2. The data processing system of claim 1, wherein at least
one of said multiple independent data processing systems is
a non-uniform memory access (NUMA) system including at
least two of said plurality of processing nodes.

3. The data processing system of claim 1, wherein said
multiple independent data processing systems contain dis-
joint subsets of said plurality of processing nodes.

4. The data processing system of claim 1, wherein said
multiple independent operating systems comprises at least
two diverse operating systems.

5. The data processing system of claim 1, wherein said
communication includes a request for configuration infor-



US 6,421,775 B1

9

mation transmitted from a master processing node among
said plurality of processing nodes to at least one other of said
plurality of processing nodes.

6. The data processing system of claim 5, said commu-
nication includes a reply message transmitted from said at
least one other of said plurality of processing nodes to said
master processing node, wherein said reply message con-
tains requested configuration information.

7. A method of configuring a plurality of interconnected
processing nodes into one or more data processing systems,
said method comprising:

coupling a plurality of processing nodes with a system
interconnect, wherein each of said plurality of process-
ing nodes contains at least one processor and data
storage;

in response to system reset, transmitting at least one
configuration message over said system interconnect;

utilizing said at least one configuration message, config-
uring said plurality of processing nodes coupled to said
system interconnect into one of a single non-uniform
memory access (NUMA) system and multiple indepen-
dent data processing systems; and

booting an independent operating system in each config-
ured data processing system, such that multiple inde-
pendent operating systems are booted when said plu-
rality of processing nodes are configured as a plurality
of data processing systems.

8. The method of claim 7, wherein configuring said
plurality of processing nodes into multiple independent data
processing systems comprises configuring said plurality of
processing nodes into at least one non-uniform memory
access (NUMA) subsystem including at least two of said
plurality of processing nodes.

9. The method of claim 7, wherein configuring said
plurality of processing nodes into multiple independent data
processing systems comprises configuring said plurality of
processing nodes into multiple independent data processing
systems containing disjoint subsets of said plurality of
processing nodes.

10. The method of claim 7, and further comprising:

storing in data storage in at least one of said plurality of

processing nodes a configuration utility forming a
portion of boot code; and

executing said configuration utility to configure said plu-

rality of processing nodes.

11. The method of claim 7, wherein transmitting at least
one configuration message comprises transmitting a request
for configuration information from a master processing node
among said plurality of processing nodes to at least one other
of said plurality of processing nodes.

10

15

20

25

30

35

40

45

50

10

12. The method of claim 11, wherein transmitting at least
one configuration message further comprises transmitting a
reply message from said at least one other of said plurality
of processing nodes to said master processing node, wherein
said reply message contains requested configuration infor-
mation.

13. A program product for configuring a data processing
system including a system interconnect having a plurality of
processing nodes coupled thereto, said plurality each includ-
ing at least one processor and data storage, said program
product comprising:

a data processing system usable medium; and

boot code encoded in said data processing system usable
medium, wherein said boot code includes a configura-
tion utility that, upon system reset, selectively config-
ures said plurality of processing nodes into one of a
single non-uniform memory access (NUMA) system
and multiple independent data processing systems
through communication via said system interconnect,
and wherein said boot code boots an independent
operating system in each configured data processing
system such that said boot code boots multiple inde-
pendent operating systems when said configuration
utility configures said plurality of processing nodes as
a plurality of data processing systems.

14. The program product of claim 13, wherein at least one
of said multiple independent data processing systems is a
non-uniform memory access (NUMA) system including at
least two of said plurality of processing nodes.

15. The program product of claim 13, wherein said
multiple independent data processing systems contain dis-
joint subsets of said plurality of processing nodes.

16. The program product of claim 13, wherein said
multiple independent operating systems comprises at least
two diverse operating systems.

17. The program product of claim 13, wherein said
communication includes a request for configuration infor-
mation transmitted from a master processing node among
said plurality of processing nodes to at least one other of said
plurality of processing nodes.

18. The program product of claim 17, said communication
including a reply message transmitted from said at least one
other of said plurality of processing nodes to said master
processing node, wherein said reply message contains
requested configuration information.

19. The method of claim 7, wherein booting multiple
independent operating systems comprises booting at least
two diverse operating systems.

#* #* #* #* #*



