US005668943A

United States Patent 1o (1] Patent Number: 5,668,943
Attanasio et al. 451 Date of Patent: Sep. 16, 1997
[54] VIRTUAL SHARED DISKS WITH 5226,037 7/1993 Satomi et al. ..oecrrsaeceenns 395/182.02
APPLICATION TRANSPARENT RECOVERY 5226,151 7/1993 Takida et al. 395/182.03
[75] Inventors: Clement Richard Attanasio, Peekskill; OTHER PUBLICATIONS
Maria Angela Butrico. Blauvelt, both A. M. Gheith and J. L. Peterson. “Shared Virtual Disk for a
of N.Y; Jflmes Lyl‘e .Pel.:erson. A}lstm. Cluster of Processors with Separate I/O Devices and Shared
Tex.; Christos Alkiviadis Polyzois, Memory”, IBM Technical Disclosure Bulletin, vol. 36, No.
White Plains; Stephen Edwin Smith. 06B, pp. 375-377, Jun. 1993.
Mahopac, both of N.Y. H. Bardsley I et al., “Dynamic Storage Susbsystem Path

Switching”, IBM Technical Disclosure Bulletin, vol. 32, No.
11, pp. 168-169, Apr. 1990.
J. C. O’Quin et al., “Takeover Scheme for Control of Shared

Disks”, IBM Technical Disclosure Bulletin, vol. 32, No. 2,
[21] Appl. No.: 653,098 pp. 378-380, Jul. 1989.

[22] Filed: May 24, 1996

[73] Assignee: International Business Machines
Corporation, Armonk, N.Y.

Primary Examiner—Robert W. Beausoliel, Jr.

. o Assistant Examiner—Joseph E. Palys
Related U.8. Application Data Attorney, Agent, or Firm—Richard M. Ludwin; Kevin M.

[63]1 Continuation of Ser. No. 332,157, Oct. 31, 1994, abandoned. Jordan
511 Int CLS GO6F 11/00 [573 ABSTRACT

[52] US. Cl iesrscrcscnonens 395/182.05; 395/182.02; A system and method for recovering from failures in the disk
i 395/182.13; 395/183.19 access path of a clustered computing system. Each node of

[58] Field of Searchccovuerrvernnnne 395/182.02, 182.03, the clustered computing system is provided with proxy
395/182.04, 182.05, 183.18. 183.19, 182.08, software for handling physical disk access requests from

200.08, 182.13 applications executing on the node and for directing the disk

. access requests to an appropriate server to which the disk is

[36] References Cited physically attached. The proxy software on each node main-
U.S. PATENT DOCUMENTS tains state information for all pending requests originating

from that node. In response to detection of a failure along the

5,155,845 10/1992 Beal et al. ...ccviecenrnrerennns 395/182.05 disk access path, the proxy software on all of the nodes

5,193,086 3/1993 Satomi et al.
5,197,148 3/1993 Blouni et al. .

e 395/182.02
... 395/182.03
.. 395/182.03

directs all further requests for disk access to a secondary
node physically attached to the same disk.

5202,887 4/1993 Ueno et al.
5212,785 5/1993 Powers et al. .. 395/182.03
5,218,601 6/1993 Chujo et al.cocveeeeeececeacns 395/182.02 9 Claims, 6 Dl‘aWiIlg Sheets
500 INTERCONNECTION
.
fl\lgoDEl NODE
- 100-N
N ~]
150-1 -
~|—| PROCESSOR | — PONy [processor |
. ¥ 200-N_|
_I MEMORY L____]—]’/ ... \—LMEMDRY ﬂ—//%o"'“
300-1~1 DISK ADAPTERS —N- DISK ADAPTERS
\ DA | 300-1-1 300-N 1\ o || -300-N-1

DISKS é é é é DISKS —a é é é %
400-1-1-1 40011J 400-N-1-1 400-N-I-J

400-1-1-J 400-1-I- 400-N-1-J 400-N-1-1

5,668,943

Sheet 1 of 6

Sep. 16, 1997

U.S. Patent

1-1-1-00¥ r-1-1-00%

r=I-N-00¥ 1-1-N-00¥ r-I-1-00% 1-1-1-00%
\ / \ [/ \ / \ [
1-N-00g -~ 1 s T~ 1oo0e] e T///
S¥3Ldvav MSIa 1-N-00€ SJILdvay MSIa 1-1-00€
N-002 0cs T
J0SS3o0dd ~~N-0CT J0SS300dd ~_ocr
— g
N-001 1-00T1
300N JAON
™\
NOILOINNDOJYILNI 00S

U.S. Patent Sep. 16, 1997 Sheet 2 of 6 5,668,943

FIG. 2
100-L 100-M
((
300-L-P 00-M-Q
(-
ADAPTER ADAPTER
N —

400-L-P-X

U.S. Patent Sep. 16, 1997 Sheet 3 of 6 5,668,943

1/0 REQUEST 700

oF tocaL oriciNn / FI1G. 3

710

LOCAL YES
2

NO

SEND REQUEST | 720
DESCRIPTOR
TO SERVER 15 PROCESS

REQUEST
<

LOCALLY
YES

730

740 SEND DATA
"™ TO SERVER

-— g’

!

790 — waIT FOR
RESPONSE

760
READ YES |
t/’////’ l

NO 770 READ DATA
“~— FROM NETWDRK

BT

\—| END

5,668,943

Sheet 4 of 6

Sep. 16, 1997

U.S. Patent

N3

!

SASNOJSHS 133717103

!

dWNS3d 1LSYIavidd

!

AQCOIAIINAT WS
ASNOJSd 04 LIVA

!

ONAdSNS LSVIavOdd

!

016

NOILJ313d 3FaNIv4

N\
006

G Ol4d

N4

H

Ol dvid 4D

NV 3ISNOJS3Fd AON3S

NIDIJO 40 4AON i —

Lvad | geg

NIDIdO

S3A 1vaO

028
SS3AY I~
ASIA ﬂ:m& 018
1S3N03d [g
v Ol4d

U.S. Patent

1000

Sep. 16, 1997

Sheet 5 of 6

FIG. 6

SUSPEND MESSAGE
RECEIVED

i

1010

SUSPEND AFFECTED

VIRTUAL SHARED DISKS

|

1020
. \—

SEND ACKNOWLEDGEMENT

TO COORDINATOR

1030

|

WAIT FOR
RESUME MESSAGE

|

1040

RESUME AFFECTED

VIRTUAL SHARED DISKS

|

1030

SEND ACKNOWLEDGEMENT

TO COORDINATOR

|

1060

A REQUESTS TO NEW SERVER

RE-ISSUE PENDING

|

END

5,668,943

U.S. Patent Sep. 16, 1997 Sheet 6 of 6 5,668,943

FIG. 7
250-K-4
/
250-K
PROXY LOGIC -
250-K-B

REQUEST ROUTING TABLE
VSD-1 SERVER S-l.///
VSD-2 SERVER S-2
VSD-3 SERVER $-3

VSD-Q SERVER S-Q

)
/

230-K-C REQUEST STATE INFO. AND QUERIES

5,668,943

1

VIRTUAL SHARED DISKS WITH
APPLICATION TRANSPARENT RECOVERY

This is a continuation, of application Ser. No. 08/332,
157, filed Oct. 31, 1994, now abandoned.

I. BACKGROUND OF THE INVENTION

a. Field of the Invention

This invention relates generally to a distributed comput-
ing environment. More particularly, it relates to a method for
use in a cluster of processors, wherein each processor in the
cluster can access any disk in the cluster.

b. Related Art

The availability of powerful microprocessors has made
clusters an attractive alternative to monolithic systems.
Applications that can partition their computation among
several nodes can take advantage of this architecture, which
typically offers better price-performance than the monolithic
systems. Such applications include large scientific
computations, database and transaction processing systems,
decision support systems, and so on.

A microprocessor cluster consists of a number of separate
computing systems, coupled with an interprocessor commu-
nication mechanism, such as a network or communications
switch. Each computing system has its own processor,
memory. and I/O subsystem, and runs a separate instance of
the operating system. For maximum benefit, however, it is
desirable for an application to be able to abstract from the
specific computing system, and treat all nodes in a cluster as
equivalent. This ability is sometimes called a “single system
image.”

A useful aspect of single system image is the requirement
that the same I/O device resources be available to all
processors in the cluster equally. This allows processing
tasks to be freely moved between processors. Furthermore,
it facilitates the development of parallel applications that
adopt a data sharing model for their computation.

Many different approaches can be taken to providing the
same I/O resources to all processors, preferably in a highly
available fashion. Data replication is the simplest, especially
for read-only data, but it increases cost (resources not
shared) and presents difficulties when the information
changes over time.

An alternative is to have devices that can be physically
attached to many processors. For example, twin-tailed (duat
ported) disks are common. It is possible to build four-tailed
disks, and even eight-tailed disks, but they become increas-
ingly expensive and difficult to operate.

In both of the above cases, each processor has indepen-
dent access to the resources, so no action is necessary to
provide continuous access to the data in case of processor
and/or adapter failure.

Distributed file systems, such as NFS, AFS and DFS,
abstract away from the specific /O device to the services it
is intended for and provide those services to the processors
in the cluster. This restricts the use of the device to those
services, thus making it inappropriate for applications that
are explicitly aware of the location of the data in the memory
hierarchy. For example, a database system may rely on its
own buffering and may want to arrange the data on disk in
its own way, rather than rely on a file system to provide these
services. In this case, direct access to the I/O device may be
preferred by the application.

In terms of high availability, HA-NFS presents NFS
clients with a highly available NFS server, but it relies

20

25

30

35

45

50

55

60

65

2

heavily on the underlying network technology (IP address
takeover) to provide critical functions that enable high
availability.

1. SUMMARY OF THE INVENTION

It is an object of this invention to provide transparent
recovery from node and/or adapter failure, in a system that
allows processors in a cluster to share I/O devices without
requiring that every /O device be attached to every node,
and allow applications running on surviving nodes to con-
tinue processing despite the failure. By transparent. it is
meant that applications do not have to reissue any requests
they had issued before the failure occurred.

Accordingly, the present invention provides a system and
method for recovering from failures in the disk access path
of a clustered computing system. Each node of the clustered
computing system is provided with proxy logic for handling
physical disk access requests from applications executing on
the node and for directing the disk access requests to an
appropriate server to which the disk is physically attached.
The proxy logic on each node maintains state information
for all pending requests originating from that node. In
response to detection of a failure along the disk access path
(e.g. in a node or disk adapter), the proxy software on all of
the nodes directs all further requests for disk access to a
secondary node physically attached to the same disk.

In a preferred embodiment the proxy logic is embodied as
a software layer that enables processors to access I/O
devices physically attached to remote processors by defining
virtnal devices, intercepting I/O requests to those devices,
and routing the requests (and data, for writes) to the appro-
priate server processor, to which the real device is physically
attached. The server processor performs the actual IO
operation and returns a completion message (and data, for a
read) to the originating processor. Upon receipt of the
completion message, the originating processor notifies,

.accordingly, the process that had issned the request.

With twin-tailed disks, high availability can be achieved
as follows. For a particular disk, one of the processors
attached to the disk is designated as the primary server.
During normal operation, I/O requests for the disk that
originate anywhere in the cluster are sent to the primary
server. If the primary server or its disk adapter fails, one of
the other processors attached to the disk becomes primary
server for the disk, and the request routing information on
each processor is changed, so that new requests are sent to
the new primary server.

In the preferred embodiment, the server is totally state-
less; the full state of pending remote requests is maintained
on the client. Thus, in case of server or adapter failure,
pending requests that had been issued prior to the failure can
be re-issued by the client to the new server and the appli-
cations never see the failure.

III. BRIEF DESCRIPTION OF THE DRAWING

The present invention will be better understood by refer-
ence to the drawing, wherein:

FIG. 11is an overall block diagram of a preferred embodi-
ment of this invention;

FIG. 2 illustrates a preferred organization of twin-tailed
disks;

FIG. 3 is a flow chart which shows the steps involved in
processing a request at a client node;

FIG. 4 is a flow chart which shows the steps involved in
processing a request at a server node;

5,668,943

3

FIG. 5 is a flow chart which shows the steps involved in
recovery at the coordinator node;

FIG. 6 is a flow chart which shows the steps involved in
recovery at the participant nodes; and,

FIG. 7 is a detailed block diagram of the memory resident
logic and data related to the virtual shared disks.

IV. DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

FIG. 1 is a block diagram of a preferred embodiment of
this invention, which incorporates the subsystem of recov-
erable virtual shared disks. It includes a collection {cluster)
of independent computing nodes (henceforth nodes) 100-1
through 100-N.

Each node has a processor labeled 150-1 for node 100-1
and memory labeled 200-1 for node 100-1 (correspondingly
150-N and 200-N for node 100-N). Those skilled in the art
will readily appreciate that each node could have separate
memory or nodes could share memory.

The nodes can communicate via an interconnection 500.
The interconnection 500 can be a switch, a local area
network, shared memory, or any other kind of medium that
allows the nodes in the cluster to exchange data.

Each node has a number of disk adapters labeled 300-1-1
through 300-1-I for node 100-1 (correspondingly, 300-N-1
through 300-N-I for node 100-N). Disks labeled 400-1-1-1
through 400-1-1-J are attached to adapter 300-1-1
(correspondingly disks 400-N-I-1 through 400-N-I-J are
attached to adapter 300-N-I). The number of disk adapters
per node need not be the same for all nodes. Also, the
number of disks per adapter need not be the same for all disk
adapters. Some nodes may even have no disk adapters at all.

Disks which are shared by multiple nodes are addressed
by a common name throughout the cluster, using the same
programming interfaces used by a node to address a directly
connected physical disk. This creates the iltusion of the disks
being physically connected to each node in the cluster. The
software and programming interface which enables such
accesses is referred to as a virtual shared disk.

Each processor’s memory contains proxy logic and state
data related to the virtual shared disks. The state data
includes data of a type which is conventionally maintained
by operating systems for physically attached disks (e.g.,
device state, device name, pending request information) as
well as some additional information which will be described
herein. This logic and related data is shown as block 250-1
for node 100-1 (correspondingly 250-N for node 100-N).
Such a block for a node 100-K is shown in detail in FIG. 7.
The proxy logic is shown as block 250-K-A in FIG. 7.

Disks which need to remain accessible in the event of a
node or adapter failure, are attached to more than one
adapter on different nodes. FIG. 2 illustrates the organization
of a twin-tailed disk, where the disk 400-L-P-X is attached
to adapter 300-L-P on node 100-L and adapter 300-M-Q on
node 100-M.

During normal operation, for every disk, one of its tails is
selected as the primary tail. Every node has a table (block
250-K-B in FIG. 7) that maps every virtual disk in the
system to the node that holds the currently primary tail. The
primary tail is the only tail used; the other tails of the disk
are on stand-by.

Applications running on any node can issue IO requests
for any disk, as if all disks were attached locally. The logic
for handling a request at the node of origin is shown in FIG.
3. When the request is issued (block 700), the aforemen-

10

15

20

25

30

35

45

50

55

60

65

4

tioned map, 250-K-B. is checked to determine which node
has the primary tail (block 710). If the node of origin is also
the server node (i.e., holds the primary tail), the request is
serviced locally (block 715). If the server node is different
from the node of origin, a request descriptor is sent to the
server node (block 720). If the request is a write request
(determined in block 730), the data to be written is also sent
to the server (block 740).

In block 750 the request (whether read or write) waits for
a response from the remote server. When the response
arrives, if the request was a read (determined in block 760),
the data that came on the network is given to the original
request (block 770). If the request was not a read., the request
completes (block 780).

The request descriptor includes the same type of data that
an operating system would conventionally send to a physical
disk device driver (e.g. device name, offset, size of request,
option flags, request type) as well as additional data such as
the node of origin, a unique request identifier and the address
of the primary node.

The logic for handling a request at the server node is
shown in FIG. 4. Arequest (block 800) may have either been
issued by a process runrning locally, or it may have arrived
on the network from a remote node. In block 810, the access
request is issued to the device. In block 820 the logic
determines the source of the request. Upon /O completion,
if the request originated locally, the operation is complete
and the originating process is notified. If the request origi-
nated at another node, in block 830 a response is sent back
to the node of origin. If the request was a read, the data read
is also sent. When the response arrives at the node of origin,
the operation completes and the originating process is noti-
fied.

‘When a processor or adapter failure occurs, it is detected,
in a conventional manner and all nodes are notified accord-
ingly. Those skilled in the art will readily appreciate that
various mechanisms (e.g.. based on periodic health checks)
can be used to detect failures.

In case of a node failure, the virtual shared disks affected
are the ones for which the failed node was serving as the
primary tail for the underlying physical device. In case of
adapter failure, the virtual shared disks affected are the ones
for which the primary tail of the underlying physical device
was connected to the failed adapter. For all of the affected
virtual shared disks, another tail of the underlying physical
device is selected as the new primary tail. The selection can
be made either statically (on the basis of a predetermined
preference order) or dynamically (by a policy module that
uses run-time information). The dynamic selection logic can
be such that it attempts to achieve load balancing between
the remaining active tails.

One of the nodes in the cluster is designated as coordi-
nator. The coordinator is responsible for notifying all nodes
in the cluster about the failure. The logic executed by the
coordinator is shown in FIG. 5. The logic for each partici-
pant node is shown in FIG. 6. The coordinator is also a
participant.

Upon failure detection (block 900), the coordinator broad-
casts a message to all participants (block 910), telling them
to suspend the affected virtnal shared disks. Upon receipt of
this message (block 1000), each participant suspends the
affected virtual shared disks (block 1010). Suspension of a
virtual shared disk means that the virtual device is marked
as temporarily having no primary tail. Pending requests that
had been sent to the failed server are saved by the client of
origin in a queue provided for this purpose. Requests that

5,668,943

5

arrive while a virtual device is suspended are also saved by
the client of origin in the same queue.

After suspension of the affected devices, each participant
sends an acknowledgement to the coordinator (block 1020)
and waits (takes no further action with respect to the affected
VSD) until it receives a resume message from the coordi-
nator (block 1030). Other processing is not affected. The
coordinator waits for all participants to respond {block 920),
and then broadcasts a message to all participants to resume
the affected virtual shared disks (block 930). Upon receipt of
this message, each participant resumes the affected virtual
devices (block 1040). Resumption of a virtual device means
that the node holding the selected new primary tail is
recorded in the destination map for that virtual device. After
resumption, the participant sends an acknowledgement to
the coordinator (block 1050) and in block 1060 re-issues all
pending requests (those pending prior to the suspension as
well as those initiated during the suspension period) to the
new server for the device. The coordinator collects the
second-round acknowledgements from all nodes (block
940).

Agreement protocols other than the variant of two-phase
commit we have described can be used to achieve the
suspension and resumption of the virtual shared disks
affected by the failure. Furthermore, in case of coordinator
failure, another coordinator can be elected to perform the
coordination of recovery.

Abuffer with frequently or recently accessed data can be
maintained in memory at the node that holds the primary tail
for a disk. If the requested data is available in memory, the
buffered memory copy is used; otherwise, a physical disk
access must take place.

For twin-tailed or generally multi-tailed disks, any node
physically attached to a disk can act as a server.
Furthermore, any subset of the processors physically
attached to the disk can act as servers simultaneously, i.e..
there can be more than one primary tail active simulta-
neously. Nodes not attached to a particular disk can access
that disk by shipping the request to any of its active servers.
The choice of server can be made statically or dynamically.

It should be understood that the disk accesses being
handled and rerouted in the event of failure are physical
access commands rather than file system operations. In other
words, in the present system, each node having a virtual
shared disk issues commands (such as reads and writes to
particular locations of the physical disk) to the disk device
driver, as if the physical disk were directly connected to the
node by way of a disk adapter. These commands are passed
from the virtual shared disk software to disk driver software
on a node directly connected to the primary tail (port) of the
disk which, in turn, issues the command to the disk con-
troller by way of the connected port.

Now that the invention has been described by way of the
preferred embodiment, various modifications and improve-
ments will occur to those of skill in the art. Thus, it should
be understood that the preferred embodiment has been
provided as an example and not as a limitation. The scope of
the invention is defined by the appended claims.

We claim:

1. A clustered multi-processing system comprising:

at least three interconnected nodes wherein less than all

nodes are server nodes, each node including a memory;

a multi-ported disk having at least a primary tail physi-

cally attached to a primary server node and a secondary
tail physically attached to a secondary server node;

a disk access request mechanism. coupled to the nodes,

for communicating a disk access request from an

10

15

20

25

30

35

40

45

50

55

65

6

originating node to a server node physically attached to

the disk along one of at least a primary disk access path

and a secondary disk access path defined between the
originating node, the server nodes and the disk;

a faiture detection mechanism, coupled to the nodes, for
detecting failures along one of the primary disk access
path and the secondary disk access path; and,

proxy logic stored in the memory on each of the nodes and
coupled to the failure detection mechanism, for redi-
recting subsequent disk access requests along a non-
failing disk access path to the disk, when a failure is
detected;.

said proxy logic comprising a two-phase commit protocol
including:

a coordinator node being adapted for broadcasting a
suspend message to participant nodes to suspend
access to a failed disk access path and waiting for an
acknowledge message from all participant nodes;

each participant node receiving the suspend message
being adapted for suspending said access to the
failed disk access path, sending the acknowledge
message to the coordinator node confirming suspen-
sion of said access to the failed disk access path, and
waiting for a resume message from the coordinator
node;

the coordinator node being further adapted for sending
the resume message upon receipt of the acknowledge
message from said all participant nodes; and

said each participant node being further adapted for
redirecting said subsequent disk access requests
along the non-failing disk access path to the disk,
upon receipt of the resume message.

2. The system of claim 1 comprising a queue, in each of
the nodes, for storing incoming access requests to the disk;
and, means for rerouting the requests in the queue to the disk
by way of the non-failing disk access path.

3. The system of claim 1 wherein all server nodes include
a disk adapter coupled to the disk and wherein the failure
detection mechanism includes means for detecting failures
in any of the server nodes and in the disk adapter.

4. A method for recovering from failures along a disk
access path in a clustered computing system which includes
at least three interconnected nodes wherein less than all
nodes are server nodes and wherein each node includes a
memory, and a multi-ported disk having at least a primary
tail physically attached to a primary server node and a
secondary tail physically attached to a secondary server
node, comprising the steps of:

detecting a failure in a disk access path in the clustered
computing system, wherein a failed access path is
associated with the primary tail;

upon detection of the failure, a coordinator node broad-
casting a message to all nodes of the system having
access to the disk;

each node receiving the message suspending access to the
disk and acknowledging suspension of the access to the
disk to the coordinator node;

the coordinator node broadcasting a second message to
the nodes to resume the access to the disk, responsive
to said step of acknowledging suspension of the access
to the disk; and

each node receiving the second message, resuming the
access to the disk by the secondary tail.

5. A method for recovering from failures along a disk

access path as claimed in claim 4, comprising the steps of;
in response to the message, saving pending requests that
had been sent to the disk along the failed access path

5,668,943

7

and saving requests that arrive while the access to the
disk is suspended; and

re-issuing all of the requests to the secondary server,

responsive to said step of resuming the access to the
disk at each node.

6. A method as claimed in claim 5 wherein said all
requests are saved in a queue, wherein said step of re-issuing
further comprises the step of rerouting the requests in the
queue to the disk by way of the secondary server node.

7. A method for recovering from failures along a disk
access path as claimed in claim 4 wherein all server nodes
include a disk adapter and wherein the disk access path
includes the disk adapter and the server nodes and wherein
said step of detecting a failure comprises the step of detect-
ing the failure in at least one of the nodes or the disk
adapters.

8. A method for recovering from failures along a disk
access path as claimed in claim 4, comprising the step of
designating a backup coordinator node to perform the coor-
dination of recovery if the coordinator node fails.

10

15

8

9. A clustered multi-processing system comprising:

at least three interconnected nodes wherein less than ail
nodes are server nodes, each node including a memory;

a multi-ported disk having at least a primary tail physi-
cally attached to a primary server node and a secondary
tail physically attached to a secondary server node;

a disk access request mechanism, coupled to the nodes,
for communicating a disk access request from an
originating node to a server node physically attached to
the disk along one of at least a primary disk access path
and a secondary disk access path defined between the
originating node, the server nodes and the disk;

a failure detection mechanism, coupled to the nodes, for
detecting failures along one of the primary disk access
path and the secondary disk access path; and,

proxy logic means, coupled to the failure detection
mechanism, for redirecting subsequent disk access
requests via a two-phase commit protocol along a
non-failing disk access path to the disk, when a failure
is detected.

